Socks – unit for Windows socket operations.

This unit was developed for using with console applications under WinNT 4.0. I was not tested with any form-based applications. Also not tested under Win95. This is beta version. If you want to be notified about updates, please send e-mail to akorud@polynet.lviv.ua or visit http://www.polynet.lviv.ua/~akorud for updates.

Special thanks to Dmitry Streblechenko (dmitrys@asu.edu) for his unit for working with Asynchronous File I/O.

Warning!!! All functions return values which mean nothing. You should not make any decision using this data (exception are functions TClientSocket.WaitForDataTime, read, write and TserverSocket.AcceptConnection – see in text).

Classes:

 TServerSocket – implement master socket that can listen for connections;

 TClientSocket – implement client socket which can be connected to any other.

TServerSocket = class(TObject)

 protected

 sock: tSocket;

 portn: word;

 public

 constructor Create(PORT: string);

 function Listen: Word;

 function WaitForConnection: Word;

 function AcceptConnection: TClientSocket;

 end;

constructor Create(port:string) – create master socket and try to bind it to port. Port can be name of service or number of port. For example this to fragments of code are equivalent:

 TServerSocket.Create(‘telnet’);

 TServerSocket.Create(‘23’);

Procedure first try to resolve service name to port number using local services file; if conversion fail it will try to interpreter port as port number. If this fail, error is occured.

function Listen – try to put socket in listen mode.

function WaitForConnection – wait for connection to socket. Socket must be set in listen mode by calling Listen before.

function AcceptConnection – when WailForConnection finish successfully you should call AcceptConnection – it perform connection procedure and return TClientSocket object which can be used for reading and writing to connection; after AcceptConnection return you can call WaitForConnection to wait for next client connection.

Main cycle of your server program may look like this:

var A:TServerSocket;

 C:TClientSocket;

begin

 A:=TserverSocket.Create(‘telnet’);

 A.Listen;

 while not Terminate do

 begin

 A.WaitForConnection;

 C:=A.AcceptConnection;

 StartClientThread(C);

 end;

end.	

�
TClientSocket – General-purpose class for read/write socket operations.

TClientSocket = class(TObject)

 protected

 sock: tSocket;

 portn:word;

 public

 Data: TStream;

 constructor Create;

 function Connect(adr: string; port: string): Word;

 function WaitForData: Word;

 function WaitForDataTime(A: Word): Word;

 function read (var Buf; len: Word): Word;

 function write (var Buf; len: Word): Word;

 end;

constructor Create – do nothing;

function Connect(adr:string; port:string) – try to allocate socket and cpnnect it given address/port. Adsress can be DNS name or IP, port – service name or number. These four examples are equivalent:

 Connect(‘192.168.0.2’,’7’);

 Connect(‘192.168.0.2’,’echo’);

 Connect(‘netsurfer.lp.lviv.ua’,’7’);

 Connect(‘netsurfer.lp.lviv.ua’,’echo’);

after connect return you can read/write to this socket using read/write methods.

function read(var Buf; len:Word):Word – read from socket to buf len bytes; len must be less then Buf size; return number of actually read bytes.

function write(var Buf; len:Word):Word – write to socket from buf len bytes; len must be less then Buf size; return number of actually written bytes.

function WaitForData – wait for data on socket; function is blocking – if no are on socket for an hour, function wont return until it see data.

function WaitForDataTime(A:Word) – wait for data on socket; if no data will come until A (sec function will return with result=1 else result will be 0.

�
Logging procedures in Global unit.

All procedures implemented in this unit support Log their activity and debug messages.

You can also use included log procedures for your own purposes.

To start activity logging you should call procedure StartLog in Global unit.

procedure StartLog(logname:string; logcons:boolean) – start logging. Log is writtend to file logname. If logcons is True then unit will try to open console window (if not yet opened) and all log will be dublicated there.

procedure StopLog – stop logging and close log file;

procedure Log(msg:string) – Log msg to logfile opened with StartLog (and) to console. Current Date/Time is automatically added to message.

Example of simple console application

{$APPTYPE Console}

program socketTest;

uses socks,global;

var C:TClientSocket;

 s:string;

begin

 StartLog(‘test.log’,False);

 C:=TClientSocket.Create;

 C.Connect(‘192.168.0.3’,’echo’);

 s:=’Hello world’;

 C.write(s[1],length(s));

 StopLog;

end.

How to contact me:

Andrij Korud

E-mail: akorud@polynet.lviv.ua

WWW: http://www.polynet.lviv.ua/~akorud

