FLoP -1.4.0

Fast Logging Project for Snort

Dr. Dirk Geschke
Dirk@geschke-online.de

FLoP - 1.4.0 Fast Logging Project for Snort
by Dr. Dirk Geschke

Published October 2004
Copyright © 2004 Dirk Geschke

Table of Contents

Y 013 1 - o PSSR i
R 1o o 11 Tod 1T o ST 1
2. Programs Of the PrOJECL........coi ittt b ettt se e eb e 2
T I (LI T A o= Lo o FO USSR 3
3.1, SHALISTICS WITN SNOIL....eeee bbbt b e s bbb e e et aesbe e e nean 3

4. CONFIGUIALION OF FLOP.... .ottt et b e b b e e e e e bt bt sbe b et e s et e aeebesbesbeseen 6
4.1. Some notes on the configuration OPLIONS.........cccccriririririeeeee e e 6

5. The programsSOCKSEIV N0 SEIVSOCK.........ccii ettt e st ste st et e e e saesneessesneensesrenns 8
5.1. The detailS OBOCKSEIV.......ciiiiiiiieiiieete ettt sttt sttt et e se et et st e e sbenesaenens 8
L0 I R 1T 1= 9

L0 7 S T T o T= 1= T To |1V R 10

5.1.3. SOmMe additioNal NOES........coiiiiiieieecieeree ettt 10

5.2. The detailS OBEIVSOCK.......coiiirieti sttt et st 11
L I © 1T 1= 12

5.2.2. The configuration file GferVSOCK.........ccoiiriiriircere e e 14

5.2.3. SIgNAINANAIING......c.oiiiiieie ettt 17

LI Yo g L= Vo (o 11 T0] g LI o 1 1= 17

6. The Programs @lert AN ArOP... ..o ettt e et s e seestestesee e eseesessessessenseneeneenessenees 19
L I I g TN o = o] S 1T o PSS 19

6.2. The details OBIOPc.eiviireiiriee bbb bbb 19

6.3. The command line options @fert aNAAropccveerererer e 20

6.4. The configuration file foRIert andaropP ... e 21

6.5. SIGNAINANAING. ...t bbbt n s 23

7. TNE Program gELPACKEL.......c.e ettt ettt ettt b et e e e e et e ae b e s b e bese et e bt ebesbeseese e s e e e aeenesbeneas 24
7.1. The extension of the database SChemME............cooo e 24

7.2. The command line optioNS QBIPACKET..........cooiiriiiiir e 25

7.3. The configuration file GEtPACKEL..........ccceiiie e e e 25

7.4. Some final NOtES QYBIPACKEL........cvieeeece e s 26

8. The program fpg, af alSEPOSItIVE QENETALOL..........ccceieieeeceee e esae e 27
8.1. The details Of thIQ PrOgraM........ccoie it ae s e tesreeneenreenes 27

8.2. The command lin€ OPtioNS fQevveveeieiciie st s nne e 28

8.3. Some final remarks 0N the Progrfii.........ccccevireieieeieeie ettt se e nnenneas 29

9. Summary of the tools and @ fiNAl SUNVEY..........cuii i e es 30

List of Examples

3-1. A simple perl script to feed an RRDtool database with a time step of 30 seconds. Here we only account for
the receive rate but it is easily extended to the other data..........ccccooviieieneneicn e 4

Abstract

The design ofsnort (http://www.snort.org/) requires a sequential work in the preprocessors, detection engine
and output plugins for each network packet generating an alert. To enhance the detection capabilities of snort it
would be an advantage to decouple the output plugins from the snort process. This is one aifLofthe

project.

The second target regards the collection of alerts generated by several sensorsemtmaheerver On this
server all alerts will be inserted into odatabasedor further processing, analyzing and/or archiving. The
processes should buffer alerts until they are inserted idait@base

Chapter 1. Introduction

The network intrusion detection systemmort (http://www.snort.org/) watches for suspicious network traffic. If

such a packet is detected it is first processed by the preprocessors. Here, among other things, the packets are
reassembled on IP or TCP basis or are normalized like http traffic. After this stage the packet is either discarded
(for the snort process) or forwarded to the detection engine. The detection engine applies several rule sets on this
packet. If one rule matches an alert is generated and all output plugins are called sequentially to process this
packet and the related informations like which rule generated the alert.

After the whole chain is worked trough the next network packet can be analyzed. All packets arrived in between
have to be buffered either by the kernel or litpcap. If there are too many network packets and/or snort takes

too long for processing the individual packets (or one output plugin blocks) it is likely that some packets are
dropped.

So on a heavy network attack a lot of packets may be dropped due to the fact that snort is working on the output
processing. On the other hand if there is no traffic snort will be idle.

One solution is to decouple the output plugins from snort. Why should snort bother about the various formats of
alerts or how to insert the packets in a database? It would be of great advantage to restrict snort to only detect
alerts.

This is wherd=LoP starts. It decouples the output plugins from snort, gathers all alerts and sends them to a
central server. At the server they where collected and inserted into a database for further processing. Additionally
all alerts are buffered until they are processed (or where explicitly dropped by a confiugartion parameter if too
many alerts are buffered).

Chapter 2. Programs of the project

The project actually consists of six programs and one patch for snort:

The patch and programs ofFLoP

snort-2.x.X_patch

This patch adds an output plugin to write the alerts via an unix domain Socket

sockserv
This program generates the unix domain socket to which snort can write the alerts. The received alerts are
buffered and transmitted to a central server runisiegysock

servsock
On thecentral servenrall alerts from all remote sensors are collected and writtendatabase Additionally
alerts with high priority can be written to an unix domain socket where another program receives these
alerts and send them via email to a list of predefined recipients.

alert

Alerts received via an unix domain socket are collected and send to a list of recipients.

drop

If too many alerts are buffered a memory shortage can arise. To avoid this a low and high water mark can be
set. If more than high water alerts are in the buffer as many alerts are written to an unix domain socket until
the low water mark is reached. This program collects these alerts and sends them via email to a list of
recipients or prints them tstdoutif sending of an email fails.

getpacket

There exists a possibility to store additonal information about the captured network packets in the database.
If these informations are available then this program can rebylchafile consisting of the original
captured network packet. This file can be used with programs like tcpdump or ethereal.

fpg

This False-Positive-Generator takesrert configuration file and creates for nearly each rule a network
packet able to raise an alert. This program is useful for performance and stress tests of the whole chain
starting at snort and ending at the database.

The next sections explain all these programs, how they work and how they can be configured.

Notes

1. Allused unix domain sockets are of tygatagramto avoid blocking if one process creating the socket is not
available.

Chapter 3. The snort patch

This patch is needed to activate an output plugin which enables snort to write all alert information and the
suspicious network packet to an unix datagram socket. To apply the patch you need only to change to the snort
source directory and use the command:

snort-2.x.x$ patch -pl < /path/to/FLoP/patches/snort-2.x.x_patch
After configure andmake the snort program understands a new option in shert.conf file:
output alert_unixsock_db: /tmp/snort[, all|log|alert]

The parameter to this output plugin describes where the unix domain socket should be found. Since we use unix
domain sockets of typeatagramit is not required that this socket exists. If there is no such socket, snort will
simply write a warning message and continue to work. If the socket gets created in between, snort will use it. So
snort is never blocked by this output plugin (except the reading process is explicit blocking).

Since snort-2.1.3 there exists also the possibility to write alternativelpghepackets to the socket or both. If
all is mentioned then only one packet is written to the socket if they are in both output chains.

Further there is the optiol® added to snort to avoid writing any alerts to the file system. (With snort-2.3 this
option will be renamed tey since-Q is used for the snort-inline part.

Thelog facility is necessary if you want to store tagged packets or packetdyia@mcrule in the database.
Take also a look at the progragetpacket

3.1. Statistics with snort

The patch additionally extends snort byZaoption. This enables snort to write statistical inforamtion about the
actual status to the unix domain socketp/stats . These informations include the number of received and
dropped packets, how many alerts where generated and which protocols where involved since the last time. The
time intervall is the parameter after this option.

With the command
snort-Z 30

the statistics are written every 30 seconds to the special unix datagram socket. Again, if this socket is not
available, nothing will be written but snort will still work.

This information can be used in conjunction with RBRDTool
(http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/) to create some nice pictures like:

Chapter 3. The snort patch

Snort statistics

300

| 2 o
200 : R
B e o A " -
_‘.;“—'- -~y
1] EEE I
15 40 15: 50 15 00 16:10

B received ackets W alerts B TCP B Uk O ICHFP

4IHIL30 TId0l / T00Llddy

Statistics picture from snort generated wRRDTool

Example 3-1. A simple perl script to feed anrRRDtooldatabase with a time step of 30 seconds. Here we
only account for the receive rate but it is easily extended to the other data.

#!/usr/bin/perl
use 10::Socket;
use |O::Handle;
use Socket;
use RRDs;

$UXSOCKADDR="/tmp/stats";

unlink($UXSOCKADDRY);

$sock = 10::Socket::UNIX->new(Local => $UXSOCKADDR, Type => SOCK_DGRAM) O
or die "Can’t bind to Unix Socket: $\n";
$sock->setsockopt(SOL_SOCKET, SO_RCVBUF, 65440); O

print "Ready to accept conntections\n";
$RRDrecv="recv.RRD";

if (! -e $RRDrecv) ad
{
$CreateRRD=true;
}
while (1) {
$len=44;
$sock->recv($input,$len);
$TotalEvents++;

@fields=unpack(" L L L L L LLLLL L"S$input)
print "\n";

if ($CreateRRD eq true)
{

RRDs::create ("$RRDrecv", "--start", "$fields[0]", "--step”, "30", O
"DS:Statistics:GAUGE:61:0:U", "RRA:AVERAGE:0.5:1:100",
"RRA:AVERAGE:0.5:10:24", "RRA:AVERAGE:0.5:20:144");

$CreateRRD=false;

O 0o o o d

Chapter 3. The snort patch

}

RRDs::update ($RRDrecv, "$fields[0]:$fields[1]"); d

Open an unix domain socket of tydatagramto be able to receive data from snort.
Increase the receive buffer of the socket.

Test if a RRD database exist, if not we have to create one.

There is no RRD database, so we create one here.

Update the RRD database.

Chapter 4. Configuration of FLoP

After the snort sources are patched you have tacanfigure in the snort source directory. This will create the
file config.h which is needed to compile FLoP. Both,snort and FLoP should use the same types of variables.

After this is done change to the FLoP directory and call lvergfigure. You have to mention the path to the
short sources with the directivewith-snort= /path/to/snortand at least one database: Either Mysq|l
(--with-mysqgl= /path/to/mysqlor PostgreSQL-{with-postgres= /path/to/postgresyl

Further you have to decide if the features and progrdrop (--enable-drop), alert (--enable-alert),
getpacket(--enable-getpacket) andfpg (--enable-fpg) should be compiled. To builhg you must have
libnet version 1.1 or newer.

4.1. Some notes on the configuration options

Whereas the path to the snort sources is required some others are optional and some are recommended.

The configure options in detail

--prefix= DIR
Gives the prefix to the installed binary, manual pages, documentation files and configuration files. These are
stalled inDIR/bin, DIR/man,DIR/doc andDIR/conf.

--with-snort= DIR

This option is requiredDIR should point to the configured snort sources. These are required to build the
FLoP package. At least we neeahfig.n of the snort sources. Additionally there is a little test to see if
the patch is applied.

--with-mysql= DIR
This option activates the support for thySQLdatabaseDIR should point to théVlySQLdirectory where
the header and library files can be found.

--with-postgres= DIR

This option activates the support for tRestgreSQldatabaseDIR should point to théostgeSQldirectory
where the header and library files can be found. Note: You can activate both databases. You have to decide
within servsock.conf ~ which one should be used.

--with-libbind

This enables the use of libbind during the link process. Since the programs can use the library functions
getipnodebyname() andgetipnodebyaddr() which are not part of every operating system we can use
this library for these functions. If this option is not activated then the functieti®stbyname() and
gethostbyaddr() are used instead.

--enable-drop

This enables the build of the prograirop and activates the interfacesinckservandservsock Note:
You have still to activate this feature via the command line options or the configuration file. So it is save to

Chapter 4. Configuration of FLoP
enable this feature.

--enable-alert

This enables the build of the progratert and activates the interfacessockservandservsock Note:
You still have to activate this feature via the command line options or the configuration file. So it is save to
enable this feature.

--enable-getpacket

This enables the build of the progragetpacketwhich is able to rebuild a file with the network packet in
pcapformat from the database. Note: You have to extend the database scheme to use this feature and have
to adviseservsockto store the additional needed information in the database.

--enable-fpg

This enables the build of the progrdpg. To compile this program you need the libnet library version 1.1
or newer.

On some systems the database library and header files are already part of the operating system. There it can
happen that for example the mysql header files are not foutpetinto/mysgl/include/ . Here you may

find them infusr/include/mysq| where the compiler will not search for this headers by default. Thererfore it
may be useful to set thePPFLAGS0gether with theonfigure command:

CPPFLAGS=-1/usr/include/mysql ./configure --with-mysqgl=/usr ...

Additionally the optionsCFLAGSfor compiler flags and DFLAGSfor linker options may be useful.

For further information read the filNSTALL and the variouREADMEHiles of the distribution.

Chapter 5. The programssockserv and servsock

These two programs are very similar and work with two parallel threads. One thread receives the alerts and the
other processes these data.

COMINoN MeEnory

\i

Thread 1 Thread 2

The principal of thesockservservsockprocess.

The first thread of the prograsockserv receives alerts froranort and stores them in a buffer in memory. The

second thread takes these alerts and forwards themGRAIP to theservsocK program. This program consists

of a master program waiting for connections freptkservprocesses of remote sensors. For each connection
one process is forked off. Each of these processes consist of two threads. One thread simply receives the
incoming alerts, the second stores them to the database.

5.1. The detalils of sockserv

This program provides an unix domain socket$oort. One thread simply receives alerts via this socket and
stores them in memory, see pictweckserv/servsockprocess.

Through the threading design and the use of a memory buffer the risk of loosing alerts is minimized. The output
plugins fromsnort are reduced to a simple write statement on an unix domain socket. If more alerts are
generated thasockservcan send to theentral serveithe alerts are buffered in memory until the attack flood
decreases.

To reduce the problem on memory shortage due to an high attack flood, the maximum number of alerts in the
buffer can be limited. This is done via two parameters LibwWater andHighWater marks. If more alerts

than theHighWater mark are buffered in memory as many alerts are dropped untilah&Vater mark is
reached. All dropped alerts are written to an unix domain socket. The pradygrs able to create such a

socket, receive these alerts and send them via email to a list of recipients.

If either sockservcan not connect teervsockon startup or the connection is closed during runtime the program
tries to reopen the connection after a short delay for several times.

Chapter 5. The programsockservandservsock

All output can be redirected ®yslog using the facilityLOCALOand levelNFO. A daemon modes also
supported. Finally statistics could be printed on a periodical basis or once by sending a SIGUSRL1 to the
sockservprocess.

5.1.1. Options

There are several options available:

sockserv [-bvhl] [-A delay] [-D dropsocket] [-H HighWater]
[-L LowWater] [-m mode] [-M maxtry] [-p port] [-P pidfile]
[-s snortsocket][-S server] [-w dir] [-W waittime]

The sockserv options in detall

-A delay

Print everydelay seconds statistics about received, sent and dropped alerts. The change of these values
betweerdelay seconds is printed in brackets. See also oplion

Start the process in the backgrouddemon modeThis automatically activates optieh .

-D dropsocket

If there are more thallighWater alerts buffered then the newest alerts are droppeitbizsocket until
theLowWater mark is reached.

-h
Print a help message and exit.
-H HighWater
Sets theHighWater mark, see optiorD . The default value is 10000.
-l
Log statitiscs teysloginstead oftdout . See also optiomA .
-L LowWater
Sets thd.owWater mark, see optiorD. The default value is 9900.
-m mode
Sets the umask tmode for the daemon mode. This affects the mode for the created unix socket and PID
file. The mode can be either givenascii, octal (with leading0) or hex(with leading0x) format.
-M maxtry
Sets the maximum number of tries to (re-) connect tosetreer . See also optioAw.
-p port

Defines on whictport to try to reach theserver runningservsock See also optiors .

Chapter 5. The programsockservandservsock

-P pidfile
Filename to store the PID. Note: This file must be writeable by the user rusockgery

-s snortsocket

Defines the name and directory where the unix domain socket is opened for snort. The default is
/tmp/snort

-S server

Defines the server runnirgervsock The name can be either a full qualified domain name or an IP address.
The default is10.200.200.1 . See also optiorp .

-w dir

Sets the working directory in daemon modeito . The default is to use the current working directory. Itis
useful to chooseé to avoid blocking of mounted filesystems.

-W waittime

Time in seconds to wait between two tries to connect to the server. See also-dption

5.1.2. Signalhandling

Currently the following signals are used wihckserv

Signals used with sockserv

SIGUSR1

Print statitics about received, sent and dropped alerts.

SIGINT

Cancels the process, prints the final statistics and performs a clean exsioditetname andpidfile
are removed.

SIGTERM

This signal results in the same behaviouS&sINT .

SIGPIPE

This signal is ignored. If theervsockprogram is interrupted during the data is sended. In this case we
simply try to open a new connection and therefore we have to ignore this signal.

SIGHUP

If this signal is receivedockservstops and restarts. First, if enabled, all buffered alerts are dropped via
dropsocket and the final statistics are printed. Furtsecketname andpidfile are removed to
enable a restart of the program. (Otherwise the program would fail since the id does not change!)

SIGALRM

This signal is used to print statistics on a periodically basis.

10

Chapter 5. The programsockservandservsock

5.1.3. Some additional notes

Thedropfeature is not enabled by default and has to be compiled in separately. If it is not compiled in then the
options-D, -L and-H are missing in the output of the option. It is highly advisable to choose a very large
HighWater mark to buffer as many alerts as possible. This will reduce the possibility of information loss. On
the other hand the difference betwdéighWater andLowWater should not be too large. To minimize
information loss the alerts are spooled gi@p to a mail server. Normally this server is either located on the
central serveror is reached via this server. If there are too many alerts spoolépothe emails become
unreadable long.

Problems should only arise if the connection to $kevsockprogram is lost for a longer period. But if there are
network problems then it is alike thdtop will fail too. If this happens then the alerts are written eithestibout
or syslog

Be cautious: With increasing buffer usage the memory consumption raises with about 3 kB for each alert
(actually 1360 bytes per alert plus payload). But this memory is shared wintiteprocess. So set the
HighWater to a value where it is safe for the snort process.

If a pid file exists then the program checks only for a running process with this PID. If one process is found the
program exits. There is no check for which program is running, only if one runs!

5.2. The details of servsock

This program provides an TCP socket smrckserv After asockservprocess has successfully connected a child
process is forked off for this communication. The child process consists of two threads. One thread simply
receives alerts via the TCP socket and stores them in memory, see gimtkszrvservsockprocess. The

second thread feeds the stored alertsdatabase

To successfully connect there are a few things which must be fullfilled:

. If the endianess of the sensor and central server are different then a connection is permanently refused. This
does not work.

- There is only on remote sensor with the same IP address allowed. If a second sensor with the same IP address
tries to connect the access is denied.

- If there are still not yet processed data from the last connection between the remote sensor and the central
server then the connection is as long refused as these data are not stored in the database

. If the database is not available if a sockserv process tries to connect then the connection is refused temporarily.

- If there is a swap file available, then the connection is temporarily refused and the data of the swap file is
inserted into the database.

Through the threading design and the use of a memory buffer the risk of loosing alerts is minimized. If more
alerts are available thaservsockcan store to thelatabaséthe alerts are buffered in memory.

11

Chapter 5. The programsockservandservsock

To reduce the problem on memory shortage due to a high overload, the number of alerts in the buffer can be
limited. This is done as witsockservvia two parameters, tHeowWater andHighWater marks. If more

alerts than thélighWater mark are buffered in memory as many alerts are dropped untildh&Vater mark

is reached. All dropped alerts are written to an unix domain socket. The pratyognis able to receive this

alerts and send them via email to a list of recipients.

If either sockservcan not connect teervsockon startup or the connection is closed during runtime the program
tries to reopen the connection after a short delay for several times.

All output can be redirected ®yslog using the facilityt OCALOand levelNFO. A daemon mode is also
supported. Finally, statistics could be printed on a periodical basis or once by segi®dsR1to theservsock
master process. This process will gather the statitistics from all child processes.

5.2.1. Options

There are several options available:

servsock [-bdfhinTuv] [-A delay] [-c config] [-D dropsocket |
[-H HighWater] [-L LowWater] [-m mode] [-M priority]
[-p port] [-P pidfle] [-s snortsocket] [-S server]
[-U alertsocket] [-w dir] [-w SwapDir]

The servsock options in detalil

-A delay

Print everydelay seconds statistics about received, sent and dropped alerts. The change of these values
betweerdelay seconds is printed in brackets. See also opfion

-b
Start the process in the backgrouddemon modeThis automatically activates optieh .

-d
Dump the actual configuration on startup. This is useful if both, a configuration fil§ ésebcommand
line options are used in combination and for debbuging purposes

-c config

Specifies which configuration file should be used. The defaatrisock.conf

-D dropsocket

If there are more thahlighWater alerts buffered then the newest alerts are droppeidoimsocket until
theLowWater mark is reached.

Store additional information in the database so thatapfile can be created with the progragatpacket
Note: You need an extended database schema to use this option. SeeRBaBIME.payload in the
distribution.

12

Chapter 5. The programsockservandservsock

Print a help message and exit.

-H HighWater
Sets theHighWater mark, see optiorD . The default value is 10000.

Log statitiscs teysloginstead oftdout . See also optiomA .

-L LowWater
Sets the LowWater mark, see optian. The default value is 9900.

-m mode
Sets the umask tmode for the daemon mode. This affects the mode for the created unix socket and pid
file. The mode can be either givenascii, octal (with leading0) or hex(with leading0x) format.

-M priority

Sets the required periodity for alerts to be writterhMtertSocket . The progranalert is able to read these
alerts and send emails to a list of recipients.

Do not resolve the full qualified names of the sensors, use the IP addresses instead. This will avoid conflicts
with the databaseéf on a new connection the DNS resolution fails or resolves to another name.

-p port
Defines on whiclport servsockshould listen, see also opties.

-P pidfile

Filename to store the PID. Note: This file must be writeable by the user rusamgock

Store additional information in the database so thatapfile including all tagged packets relating to an
alert can be created with the progrgetpacket Note: You need an extended database schema to use this
option. See the filREADME.payload in the distribution.

-s socketname
Defines the name and directory where the unix domain socket ofatadasds opened. A value dNULL
results in an internallULL pointer, this is useful in combination wifPostgreSQL

-S server

Defines the interface wheeervsockshould listen on. The name can be either a full qualified domain
namé or an IP address. The defaulti®.0.0 to bind on all available and configured interfaces. See also
option-p .

T

Enable trust modus for thaatabaself set, it is assumed that the alert description is already part of the
database. If this is not the case, all these informations are inserted. So it is safe to enable this feature unless
the transfer of alert message is disabledniort. But this is a veryexperimentafeature and is usually

disabled by default. (But would save 256 Bytes on the wire!)

13

Chapter 5. The programsockservandservsock

-U alertsocket

Specifies where the unix domain socket of the alert program can be found, se.also

Disables the use of theertsocket . This is useful if the alert is activated in the configuration file but
there is naalert program running. So it is only useful for debugging.

-V
Print version information.

-w dir
Sets the working directory idaemon modeo dir . The default is to use the current working directory. It is
useful to chooseé to avoid blocking of mounted filesystems.

-W SwapDir

Sets the directory where the swap filnsor_ SensorNames created and alerts are buffered if the
database connection is lost.

5.2.2. The configuration file of servsock

Additionally to the command line arguments there are some options which must be set via a configuration file.
At least thedatabaseconfiguration has to be set in the configuratiorffile

The command line options have precedence above the settings in the configuartion file. If an option is mentioned
on the command line this value is used regardless of the settings in the configuration file.

On the other hand all parameters of the command line can be set in the configuration file (exceptigpfan
the command line options are more suitable for quick tests.

The format of the file is simple, the first word is a keyword and the second is the value. They are separated by a
colon (:) or equal sign (=). White spaces are allowed in any number.

The values can be put in single (°) or double (") quotes, all between is used as the value with one exception. This
exception is the comment sign (#). All entries after this sign are ignored. To use the command sign it has to be
escaped with a backslash: \#.

To use white spaces in a value they must be surrounded by quotes.

So all this results in a value with space, exept the last one without quotes. This will respdt:in
'spa ce’ = "spa ce" = spa ce

All keywords are case insensitive (but not the values!).

14

Chapter 5. The programsockservandservsock

The parameters of the configuration file for servsock in detail

DBuser : name
Specifies the name of tlatabaseauser who is allowed to dINSERTs, SELECT® andUPDATE of tables.
The default issnort

DBpassword : password
Specifies the password used among withlBeser name to connect to thdatabaseNote: An empty
password has to be represented by empty quotes, which is the default.

DBname name

Name of thedatabasevhereservsockshould insert the alerts, defaultssoort

DBtype : name
Type of thedatabaseo use. Actually onlyMySQL(http://www.mysqgl.com/) anostgres
(http://www.postgresqgl.org/) are supported and have to be enabled at compile Serwsick No default
is set since it is not clear whidatabasesupport was enabled at compile timesafvsock

DBencoding : name

Defines the encoding scheme wich is used to insert the payload intlathlease Allowed values aréex ,
base64 andascii . Thebase64 encoding requires less memory in tth@tabaseut it makes it difficult to
search for special entries in the payload. Bkei only stores ascii characters to the database, all binary
data is replaced by a dot. So the only really useful option isiescheme which is the defallt

DBtrust :value

A non-zerovalue enables thérustmodus for the database. If this modus is enabled it is assumed that all
possible signatures are already part of the database. This will result in slight R&ERTS since less
detailedSELECTstatements are needett is safe to enable this even if you are not sure, missing signatures
will still be inserted. The equivalent command lineTs

DBtrans : value
A non-zerovalue enables the use tfansactiongogether with the database. If you use the MySQL
database you have to use tables of typeDB, otherwise the transactions are simply ignored.

PIDFile : pidfile
Specifies which file should be used to store the PID. This file must be writeable by the user running
servsock This correspond to optiosP .

SocketName : socketname

This specifies where to find the unix domain socket of the database. If theNuatdall capital!) is given,
the database libraries find the socket by their own mechanism. This is useful in combination with the
PostgreSQldatabase. This is equal to the.

ServerName : hame

Defines on which interface defined by the addiemssockshould listen on. Possible values faame are
either full qualified names (not very useful) or a dotted IP address. The defalltd® to listen on all
available interfaces.

ServerPort :value

Defines the port whergservsockwill listen on. The default is port234 . Compare to optiorp .

15

Chapter 5. The programsockservandservsock

AlarmDelay : value
Write everyvalue seconds statistics of received, sent and dropped alerts. In braces the differences to the
last output are printed. See optiek.

Syslog : value
If the value is non-zero then the statistics are loggedsyialogand not printed tatdout . The facility is
LOCALOand the level iSNFO. Compare to optiord

FQNSensor: value
With avalue of zero the IP address of the sensor is used as sensor name in conjunction \détatiese
The equivalent command line option-is.

AlertSocket : alertsocket

Name of the unix domain socket where alerts with high priority are written to. See option

UnixPriority : value
The value determines the minimum priority where alerts are additionally written tid¢h€ocket °. The
command line equivalent is the optiem.
DropSocket : dropsocket
Name of the unix domain socket where alerts are dropped to if the number of queued alerts reaches the
Highwater mark. Compare to optioH .
HighWater : value
If the number of queued alerts reaches tfakie thenservsockbegins to drop alerts to thHeropSocket .
This corresponds to optioi .
LowWater : value
Thisvalue must be smaller tharighwater °. If the Highwater mark is reached so many alerts are
dropped to thé®ropSocket until this LowWater value is reached. This corresponds to option
DaemonMode value
A non-zerovalue enables thelaemon modehe program forks into the background. This automatically
activates theSyslog option. See optiorb .
Umask mode
Sets thaumaskio mode for the DaemonMode This affects the mode for the createFile . Themode
can be either given iascii, octal (with leading0) or hex(with leading0x). This is equal to the optiom.
SwapDir : SwapDir

Sets the directory where the swap Bnsor_ SensorNames created. This file is used to swap out alerts if
the database has gone and is read in again if the database is available and the remote sensor connects again.
The default is to ustvar/tmp . See optionw.

FullPayload :value

Store additional information in the database so thatapfile can be created with the progragatpacket
Note: You need an extended database schema to use this option. SeeRBEAKIME.payload in the
distribution and optionf .

16

Chapter 5. The programsockservandservsock

Reference : value

Store additional information in the database so thatapfile including all tagged packets can be created
with the prograngetpacket Note: You need an extended database schema to use this option. See the file
README.payload in the distribution and optiofr .

5.2.3. Signalhandling

Currently the following signals are used wibrvsock

SIGUSR1
If send to the master process ($8BFile) statitics about received, sent and dropped alerts of each
servsocksockservpair are printed. Each of the forked off processes ingore this signal.
SIGUSR2
If the master process receiveS&USR1signal it sends 8IGUSR2signal to each child process handling a
servsocksockservpair. Each child process prints then its statistics. The master process ignores this signal.
SIGINT
Cancels the master process, prints the final statistics and makes a clean egicRémame and
PIDfile are removed. The child processes dump the buffered alerts to the swap file and exit.
SIGTERM

This signal results in the same behaviouS&sINT .

SIGHUP

If this signal is received by the master process themvsockstops each child process by sendirg)@TERM
signal and restarts itsélf First all buffered alerts are written to the swap files and the final statistics are
printed. FurtheSocketName andPIDFile are removed to enable a restart of the program. (Otherwise the
program would fail since the PID did not change!) The child processes simply ignogGHePsignal.

SIGALRM

This signal is used to print statistics on a periodically basis.If this signal is send to the master process it is
forwarded to all child processes.

5.2.4. Some additional notes

Thedrop andalert features are not enabled by default and have to be compileehisockseparately. If it is not
compiled in then the option®, -L and-H are missing for thelrop and the optionsM, -u and-U are missing
for thealert program in the output of thér option.

In contrast tasockservthe LowWater andHighWater marks have to be choosen with more caution. First there
are more processes running thanskevsockprocesses especially tdatabaseFurther the bottleneck is not the
network, it is usually thelatabaseSo it is quite normal that here the number of buffered alerts increase rapidly
on heavy attacks.

17

Chapter 5. The programsockservandservsock

Since the sensor name is taken from the IP address of the computer ranoksgrv(the remote sensor) there is

only onesockservinstance per IP address allowed. Otherwise there will be a lot of collisions of inserts related to
thedatabase(Two different sensors with the same name try to insert two different alerts with the same database
Sensor ID, for example.)

If the connection diessockservopens a new connection and a nesvvsockprocess is forked off. But if the old
servsockthread feeding thdatabaselid not finished yet there arises a problem like the same sensor is logging
twice times. Thereforservsockhas a list of up t@5 running child processes with the sensor IP they are dealing
with. So if there is still one thread running any new connection edekservprocess with the same IP address is
rejected!

On startup a handshake must be fullfilled. During this phase the endianess of both partner, the availability of the
database and the presence of a non-zero swap file are checked. Depending on the result a conncetion is either
allowed, temporarily rejected or permanently denied.

If a SIGHUP signal is received by the process with the idbtibFile all child processes are terminated first. If
there are buffered alerts it can take some time until all of them are written to the swap files. So a time delay on
restart is not uncommon.

If a PIDFile exists the program checks for a running process with the id of this file. If one is found the program
exits to avoid running the same program twice. But there is no check for which program is running, only if there
is one in the process list!

Notes

1. This program povides an unix domadoclet and connects tosener.
2. This program povides asener and writes the alerts via an unix domairclet to the database.

3. One important thing to obey is that either the program has to be started with absolute path or relative to the
daemon working directory (optioav). Or the program has to be started without any path information and
should be found in the systeRATH Otherwise the program can not find the own executable and will fail.

4. Sometimes databases hung on many inserts due to things like internal garbage collection. In addition there
are many tables which have to be filled in for each alert. All this will slow down the insert rate of the
database

5. This not really useful since central server have usually more than on interface or you need a full qualified
domain name for only this interface. Most name server reolve IP addresses in a round robin procedure for
more than one IP address. So the interface on wééchisockbounds would not be unambigous.

6. Especially thgpasswordor the database should not appear in the processlist.
7. This option should be removed in the future in favour of only usiex).

8. This behaviour is a little bit different to the default one. Here we check or all values like revision and priority
even if they are zero. In the other case we checlvfdrL values if they are zero. Indeed I think if the values
are not set in the rule (aka the value is zero) this value should be inserted with the rule in opposite to keep it a
NULLvalue. So maybe this will change in the near future.

9. This keyword should be replaced BiertPriority in a future release.
10. The mimimum difference between this two marks should be at least greater than 10.

11. This results in a time delay for a restart since first it must be waited until all child processes exit.

18

Chapter 6. The programs alert and drop

These two programs are very similar and are compiled out of the same source file. They provide an unix domain
socket to receive alerts and try to send them via email to a list of recipients.

The alerts are buffered in memory and send via email to a list of recipients. This can be triggered either on a
periodically basis or if a given number of alerts is reached. Both variants can be activated separately but it is a
good idea to use both. The time interval is useful to collect alerts instead of sending one mail for each alert

which could result in a denial of service. The maximum number of alerts has the advantage to keep the used
memory small and the emails in a readable size. Otherwise it could happen that too many alerts have to be stored
in memory until an email could be send.

6.1. The details of alert

This program works in contrast ttrop only with servsockand receives alerts via the unix domain sockets of
priority equal or highetnixPriority . See also optiorM of servsock

The primary idea of this program is to have a separate mechanism to inform about critical alerts. Since it is very
likely that thedatabasas filled with a lot of less important alerts it is quite possible to either oversee the
important alerts or to find them too late.

If the progam fails to send the emails it tries it again later. This is done up to five times. This number can be
adjusted via the command line optiem or theMaxCount keyword.

If it is not possible to send an email during this time the program simply exits. Another process should inform an
operator about this problem.

6.2. The details of drop

This program works in contrast tdert with both,sockservandservsock It receives alerts via the unix domain
socket if theHighwater mark of queued alerts isbckserv or servsock are reached.

The primary idea of this program is to keep at least minimal informations about alerts. If there are too many

alerts buffered some processes could fail due to memory shortage. So there should be a mechanism to drop some
alerts to keep the buffer size limited. These alerts will not be inserted idatadaseout are mailed to a list of

recipients.

If the progam fails to send the emails it tries it again later. This is done up to five times. This number can be
adjusted via the command line optiem or theMaxCount keyword.

19

Chapter 6. The programalert anddrop

If it is not possible to send an email during this time the program writes the content of this esteduo .
Another process should inform an operator about this problem. In contraletrtaloes this program not exit, it
simply continues to work.

6.3. The command line options of alert and drop

Both programs use the same command line options, there is no difference between these options.

drop | alert [-bDFhlpTW] [-A delay] [-c config] [-d domain]
[f from] [-L level][-m mode] [-M max] [-p port]
[-P PIDfile][-r rcpt 1 [-s socket] [-S server][-w dir]

The alert and drop options in detail

-A delay

Try everydelay seconds to send an email if there are any alerts in the buffer.

-b
Start in daemon mode, switch to a background process. This automatically activates thel option
-c config
This defines the name of the configuration file to use.
-d domain
Usedomain asHELOstring on a connection to thdailServer see optionsS .
-f from
Sets the sender address of the emaifsdm .
-F
Try to resolve the sensor names via DNS.
-h
Print a help text and exit.
-
Print viasysloginstead oftdout
-L level
If a number oflevel alerts are in the buffer, send an email. A value of zero disables this feature.
-m mode
Sets the umask tmode for thedaemon modeThis affects the mode for the created unix socket and PID
file. The mode can be either givenascii, octal (with leading0) or hex(with leading0x) format.
-M maxcount

Specifies the maximum number of tries to send an email. If still no email could be send the padgitam
exits and the programrop prints all alerts testdout or syslog see optionl .

20

Chapter 6. The programalert anddrop

-p port

Try to reach themail serveron thisport . The default is port 25, see also opti.

-P PIDFile

Specifies which file should be used to store the PID. This file must be writeable by the user running
alert/drop!

-r recipient

Sets the address of one recipient for the emails. This option can be used several times to build a list of
recipients.

-s socketname

Specifies which unix domain socket of typatagramshould be opened to listen for alerts.

-S server

-V

Specifies the mail server which should be used to send the emails. This server should allow relaying for the
server runninglert or drop.

Print version information and exit.

Activates the verbose mode, some useful informations are printed if an email is send. This is useful for
debugging if there are any problems with the mail server.

-w dir

Sets the working directory in daemon modedio . The default is to use the current working directory. It is
useful to choose to avoid blocking of mounted filesystems.

6.4. The configuration file for alert and drop

The format of the configuration file is the same asdervsoclkandsocksery

The parameters of the configuration file for alert and drop in detail

AlarmDelay :time

The program will check everime seconds for the presence of received alerts. If there are any an email is
send. The default is 5 minutes (300 seconds). The equivalent command line option is

AlarmLevel :level

If the number of received alerts reachegel than an email is sent regardless of the status of
AlarmDelay . The default is 0 which disables this feature. But it is recommed to use this feature since it
limits the number of alerts which are buffered in memory. The command line optian is

21

Chapter 6. The programalert anddrop

DaemonMode value
A non-zero value enables the daemon mode. The program forks off in the background and detaches from
the terminal. See also opti@aemonDir andUmask. This automatically enables also the opt&yslog .
The command line optiosb .

FQNNamesvalue
A non-zero value enables resolving of full qualified names of the reporting sensor. To reduce CPU usage
this values are cached in ann internal'li§ee also optiorF .

MailServer : name
Specifies the server which should be used for relaying of the emails. This server should allow relaying for
the different hosts runningockservandservsock The default server iecalhost . The command line
option is-S..

MailPort : number
Specifies that the mail server is reached via parhber . The default is pore5. The command line option
is-p.

MailRecipient ~ : address
Sets the address of one recipient of the emails. This option can be used several times to build a list of
recipients. This is equal to the command line option

MailSender :address

Sets the address of the sender of the emails. The command line opfion is

MailDomain : domainname

Specifies the domain name which should be used in a mail session on skEEtQs(ring), see optiond .

MaxCount : count
Specifies the maximum number of tries to connect to the mailserver and deliver mailscd\ftdr tries
the progranalert terminates! The prograurop simply writes all alerts to syslog or stdout and continues
to work. See optioaM.

PIDFile : filename
Specifies which file should be used to store the PID. This file must be writeable by the user running
servsock This correspond to optiosP .

SocketName : socket
This specifies which unix domain socket should be openeddokservandservsock This is equal to the
-s .

Syslog : value
If the value is non-zero then all output is written syslogand not printed tetdout . The facility is
LOCALOand the level iSNFO. Compare to optiod

Umask mode

Sets thaymaskio mode for the DaemonMode This affects the mode for the createtbrFile and unix
domain socket (seBocketName). Themode can be either given iascii, octal (with leading0) or hex
(with leading0x). This is equal to the optiom.

22

Chapter 6. The programalert anddrop

DaemonDir : directory

Sets the working directory in daemon modelé@mondir . The default is to use the current working
directory. It is useful to chooseto avoid blocking of mounted filesystems. See optien

6.5. Signalhandling

Currently the following signals are used wilert anddrop:

SIGINT
Cancels the program, the socket and PID file are removed and the program exits. The phogranints
all buffered alerts, either vistdout or syslog see optionl or keywordSyslog , before it exits.
SIGTERM

This signal results in the same behaviouS&sINT .

SIGHUP

If this signal is received the unix domain socket will be closed, the socket and PID file removed and thre
porgram gets restarted. The progrdrop prints first all buffered alerts.

SIGALRM

This signal is used to print statistics on a periodically basis. If this signal is send to the master process it is
forwarded to all child processes.

Notes

1. If the DNS name changes while the program runs, the old names are still used.

23

Chapter 7. The program getpacket

This program can build a network packetdoapformat which can be used by an analyzer likpdump or
ethereal

This requires some additional options to be used.

« The standard database scheme as shipped with snort must be extended.
- The payload has to be storedhiexformat.base64s not supported yet arabsciiis useless.

« The optionf of servsockor the parametefullPayload in servsock.conf ~ have to be enabled when the
alert ist stored in the database.

« Actually only ethernetis supported for the link layer. But to use another link layer is not really a problem.

The advantage of this approach is that the protocol analyzing mechanisms of prograetisdileal are far
better than it is possible witACID. For example think of DNS queries or responses.

7.1. The extension of the database scheme

To store the additional header and pcap information in the database the normal scheme (as part of snort) must be
extended. These extensions work well even with programsAGD.

These extansions must be done within the database, eithemyittl or psql. If you have choosen the right
database then enter at the command prompt the following commands:

ALTER TABLE data ADD COLUMN data_header TEXT,

This command adds a column for the missing packet headers. The payload stored by the normal process contains
only the protocol payload of the alert. RCPalert only stores the payload embedded inT&# stream, narCP
header notP header nor the link level data.

ALTER TABLE data ADD COLUMN pcap_header TEXT;

This column stores thpcapheader containing the time when the packet was captured and the snaplen.
ALTER TABLE schema ADD COLUMN full_payload SMALLINT;

With this column it is possible to note that the database is capable of storing the extended data.
UPDATE schema SET full_payload=1,;

This sets the capability to store the full payload. If set to 1 themsockwill accept thef option or
FullPayload keyword.

24

Chapter 7. The progrargetpacket

Similarily, if the -r option orReference keyword should be useable to store the reference of tagged packets
then the event table has to be extended:

ALTER TABLE event ADD COLUMN reference INTS;
And the schema table has to be extended and updated so that we can query this settings.
ALTER TABLE schema ADD COLUMN reference SMALLINT; UPDATE schema SET reference=1;

If all this commands were applied to the database you have still to activate the storage of the additional data
within servsock

7.2. The command line options of getpacket

getpacket [-ahtv] [-c ConfigFile] [-C PacketCount] [-S SensorlID] [-w DumpFile]

The getpacket options in detalil

-a
Build a pcap file of all packets with the same revision (tagged packets) which contain SID and CID. The
option-t is automatically activated. Therefore you need an extended database scheme (see
README.payload).

-c ConfigFile
Specifies which configuration file should be used. The defagHtisacket.conf in the installation
configuration directory. It is also possible to use $hevsock.conf ~ of servsock The not needed
keywords are ignored, only a warning is printecstdout . This configuration file contains the data to
needed to access the database.

-C CounterID
Specifies the count&®ID of the alert in the database. Together with the sens@IDthis data is
unambiguous specified.

-S SensorlD
Specifies the ID of the sens8tD in the database. Together with t6¢D is the data is unambiguous
specified.

-t
Specifies that getpacket should attempt to use the reference column to include all the tagged packets
relating to the initialSID/CID pair.

-w DumpFile

Specifies which file is used to store theapdata. If the special file nameis mentioned then the pcap data
is written tostdout .

25

Chapter 7. The progrargetpacket

7.3. The configuration file of getpacket

The getpacket keywords in detail

DBuser : name

Specifies the name of tltatabaseuser who is allowed to dSELECT of the tables. The default $ort

DBpassword : password
Specifies the password used among withlBeser name to connect to thdatabaseNote: An empty
password has to be represented by empty quotes, which is the default.

DBname name

Name of thedatabasavheregetpacketshould select the alert packet data, defaultsort

DBtype : name

Type of thedatabaseo use. Actually onlyMySQL(http://www.mysqgl.com/) an®ostgres
(http://www.postgresql.org/) are supported and have to be enabled at compile Serwsdck No default
is set since it is not clear whidatabasesupport was enabled at compile timesefrvsock

SocketName : socketname

This specifies where to find the unix domain socket of the database. If theNuatdall capital!) is given,
the database libraries find the socket by their own mechanism. This is useful in combination with the
PostgreSQldatabase.

If the servsock.conf file is used then only the necessary keywords are used. All other options are ignored and
a warning is printed tatderr

7.4. Some final notes on getpacket

If the full payload is not stored in the database then only an epgrpfile only containg gcapfile header is
created. An error message is printectderr.

Some alert packets seem to have no payload (if you use ACID for example) but this is only for the higher level
protocols valid. Only preprocessor alerts have no payload at all since they do not act on a special network packet.

The restriction to ethernet packets is only for fmapheader. Since the data link layer may have different sizes
this must be entered in thpeapfile header. But this information is not forwarded to the central server. But this
value can be easily adjusted.

Note: The rebuild packet also contains the MAC addresses of the ethernet packet and the capture time of the host
runningsnort.

If the reference data is not stored in the event table, getpacket cannot dump all related tagged packets in the pcap
file.

26

Chapter 8. The program fpg, af alsepositive
generator

This programcreates network packets which raise false positive alerts wsthont. It reads asnort
configuration file and tries to build one network packet for each rule containing all necessary values.

Nearly all kind of network packets can be created, only some newer featusasrolike byte_test and some
ICMP types are not supportéd

8.1. The details of the fpg program

Actual fpg uses a lot of snort keywords. Up to 5 levaisinclude files are supported.
snort keywords used by fpg

+ include
. alert

« log

. var

. tcp

- udp

« icmp

. any

. 1pc

« msg

. content
« uricontent
« dsize

« sameip
. offset

. distance
« depth

« within

. fragbits
. id

« ip_proto
o ttl

. itype

. icode

27

Chapter 8. The prograrfpg, a false positive generator

« icmp_id
« icmp_seq
+ isdataat
. flags

+ flow

- seq

. ack

Options not mentioned here are simply igndrétu have explicitly to specify a source and destination address.
So any special address in the configuration file are overwritten. So some rules will not raise alerts due to this
wrong addresses.

8.2. The command line options of fpg

fpg [-hve] [¢ config] [-D count] [-n count] [-M maxpackets]
[-R msec] [-T msec] -s source -d destination

The fpg options in detail

-c config
Specifies which configuration file ghort should be used to generate the network packets. The default is
snort.conf in the current directory.

-d destination
This option is mandatory and specifies the destination address used in the network packets. So any
destination addresses in the configuration file are ignored.

-D count

Insert everycount packets a time delay, see optiah. This feature is disabled by default.

Runfpg in an endless loop, after the configuration file is worked through the program starts again at the
beginning. The optioAv ist still valid. See also optiom .

Print some help information and exit.

-M maxpackets

Specifies the maximum number of network packets to be generated and sent. Seesalden .

-n count

Send each build network packaiunt times. See alseM which is still valid and optione .

-R msec

Specifies a random delay between two network packets of maxrnset milliseconds. This is useful to get
a more random like traffic and to limit the rate.

28

Chapter 8. The prograrfpg, a false positive generator

-s source
This option is mandatory and specifies the source address used in the network packets. So any source
addresses in the configuration file are ignored.

-T msec
Specifies the time delay between the number of network packets specified-bydp&on. This is useful to
avoid an overrun of the sending queue.

-V

Print version information and exit.

8.3. Some final remarks on the program fpg

Without any limitation and a fast machine the rate of generating network packets is much faster as the network
device is able to generate. Therefore the optimnand-T were introduced.

The-R option was introduced to get a more realistic network traffic shape. This way it is possible to study the
behaviour ofsnort on a more realistic scenario.

The-n option is the fastest way to generate a lot of alert packets, but all are equal. If one packet is build it is sent
again several times. So all these packets look identical.

With the-e option the configuration file is walked through several times and all network packets are new build.
Any unspecified values in the configuration file are replaced by random values. So with this option the network
packets for the same rule look a bit different.

The destination address should be a valid one, there should be a target with this address. Otherwise all packets
will be blocked at the last hop with unsaturated arp requests for the destination address.

Be aware that nearly all packets will result in reset packets sent back to the mentioned source address (see option

-s).

Notes

1. To build network packets with own contents, e.g. different source addresses as the system has, TCP packets
with flags set and so on, you must be root to use this progam!

2. To raise alerts within snort-2.0.0 you have to disablestream4 preprocssor. This preprocessor discards
all packets which are not established and the rule says the packet has to be established.

3. This is only one parameter in the source file and can be easily increased.

4. These options are ignored, not the whole rule!

5. TheC functionusleep() is used, wich can sleep for microseconds. But the finest granularity of this
function is in the range of 108z Therefore we use a delay in miliseconds every few packets instead of an
usleep() after each packet is sent.

29

Chapter 9. Summary of the tools and a final survey

The pictureshows how all these tools work togethemort watches the Ethenet wire for suspicious traffic and
reports alerts tgockservwhich forwards them tgervsock This program writes the alerts together with the
payload in edatabase

Ethernet

é SENsor
\

/tmp/ snort
snort - | sockserv
unix socket
TCP-»1234
/tmpfalert
servsock = alert
unix socket TOP—2»25
unix
socket /tmp/drop
unix
socket
drop
TCP-»25
database

Central Server

An illustration howsocksery servsock alert anddrop work togethet.
The progranfpg can be used to generate traffic on the ethernet which should raise alertssmiphinThese
alerts are written to the unix domain socketp/snort ~ wheresockservreads them.

One thread ofockservreads in these alerts whereas the second thread sends the alerts via TCP (port 1234) to
the central severAll alerts are buffered to account for bottlenecks in the chain.

On thecentral sevethe master process sérvsockwaits for new incoming connections from remsensorsl|f
a new conncetion is established a process is forked off to handle this commmunication.

One thread is of this process receives the alerts and stores them in a memory buffer. The second thread takes
these alerts out of the buffer and stores them via an unix domain socketdattitgaseOn alerts with a high
priority the details and ID of this event are written to the unix domain sotketalert

The progranalert reads this alert informations and collects them. On a periodically basis or if a given number of
alerts is reached this information is send via email to a list of recipients.

30

Chapter 9. Summary of the tools and a final survey

If there are too many buffered alerts withtarvsocka drop functionality is activated. If thgighwater mark is
reached then as many alerts are written and dropped as mamptdrop until theLowwater mark is reached.

The prograndrop reads these alerts and collect them. It works &ilert but does not store the database ID since
these alerts are not part and will not be part ofdaéabaself the sending of mail fails for several times these
alerts are written tetdout or syslogso no alerts should be lost. This behaviour is differeralést which

would simply delete these alefts

Notes
1. The prograndrop can also work wittsockservbut this is omitted in this picture.

2. The reason for this behaviour is quite simple: The progadert is intended to inform about alerts with high
priority if they arive. But these alerts are already part of the database. So if the sending of mail fails one can
still find these alerts in the database.

31

	FLoP 1.4.0
	Table of Contents
	List of Examples
	Abstract
	Chapter 1. Introduction
	Chapter 2. Programs of the project
	The patch and programs of FLoP

	Chapter 3. The snort patch
	3.1. Statistics with snort

	Chapter 4. Configuration of FLoP
	4.1. Some notes on the configuration options
	The configure options in detail

	Chapter 5. The programs sockserv and servsock
	5.1. The details of sockserv
	5.1.1. Options
	The sockserv options in detail

	5.1.2. Signalhandling
	Signals used with sockserv

	5.1.3. Some additional notes

	5.2. The details of servsock
	5.2.1. Options
	The servsock options in detail

	5.2.2. The configuration file of servsock
	The parameters of the configuration file for servsock in detail

	5.2.3. Signalhandling
	5.2.4. Some additional notes

	Chapter 6. The programs alert and drop
	6.1. The details of alert
	6.2. The details of drop
	6.3. The command line options of alert and drop
	The alert and drop options in detail

	6.4. The configuration file for alert and drop
	The parameters of the configuration file for alert and drop in detail

	6.5. Signalhandling

	Chapter 7. The program getpacket
	7.1. The extension of the database scheme
	7.2. The command line options of getpacket
	The getpacket options in detail

	7.3. The configuration file of getpacket
	The getpacket keywords in detail

	7.4. Some final notes on getpacket

	Chapter 8. The program fpg, a false positive generator
	8.1. The details of the fpg program
	8.2. The command line options of fpg
	The fpg options in detail

	8.3. Some final remarks on the program fpg

	Chapter 9. Summary of the tools and a final survey

