
FLoP - 1.4.0

Fast Logging Project for Snort

Dr. Dirk Geschke
Dirk@geschke-online.de

FLoP - 1.4.0 Fast Logging Project for Snort
by Dr. Dirk Geschke

Published October 2004
Copyright © 2004 Dirk Geschke

Table of Contents
Abstract..i

1. Introduction ..1

2. Programs of the project...2

3. The snort patch..3

3.1. Statistics with snort...3

4. Configuration of FLoP...6

4.1. Some notes on the configuration options..6

5. The programssockserv and servsock..8

5.1. The details ofsockserv...8
5.1.1. Options..9
5.1.2. Signalhandling..10
5.1.3. Some additional notes...10

5.2. The details ofservsock...11
5.2.1. Options..12
5.2.2. The configuration file ofservsock..14
5.2.3. Signalhandling..17
5.2.4. Some additional notes...17

6. The programs alert and drop..19

6.1. The details ofalert ..19
6.2. The details ofdrop ..19
6.3. The command line options ofalert anddrop ...20
6.4. The configuration file foralert anddrop ..21
6.5. Signalhandling...23

7. The program getpacket...24

7.1. The extension of the database scheme..24
7.2. The command line options ofgetpacket..25
7.3. The configuration file ofgetpacket...25
7.4. Some final notes ongetpacket..26

8. The program fpg, af alsepositivegenerator..27

8.1. The details of thefpg program..27
8.2. The command line options offpg ...28
8.3. Some final remarks on the programfpg..29

9. Summary of the tools and a final survey..30

iii

List of Examples
3-1. A simple perl script to feed an RRDtool database with a time step of 30 seconds. Here we only account for

the receive rate but it is easily extended to the other data..4

iv

Abstract

The design ofsnort (http://www.snort.org/) requires a sequential work in the preprocessors, detection engine
and output plugins for each network packet generating an alert. To enhance the detection capabilities of snort it
would be an advantage to decouple the output plugins from the snort process. This is one aim of theFLoP
project.

The second target regards the collection of alerts generated by several sensors on onecentral server. On this
server all alerts will be inserted into onedatabasefor further processing, analyzing and/or archiving. The
processes should buffer alerts until they are inserted in thedatabase.

i

Chapter 1. Introduction

The network intrusion detection systemsnort (http://www.snort.org/) watches for suspicious network traffic. If
such a packet is detected it is first processed by the preprocessors. Here, among other things, the packets are
reassembled on IP or TCP basis or are normalized like http traffic. After this stage the packet is either discarded
(for the snort process) or forwarded to the detection engine. The detection engine applies several rule sets on this
packet. If one rule matches an alert is generated and all output plugins are called sequentially to process this
packet and the related informations like which rule generated the alert.

After the whole chain is worked trough the next network packet can be analyzed. All packets arrived in between
have to be buffered either by the kernel or thelibpcap. If there are too many network packets and/or snort takes
too long for processing the individual packets (or one output plugin blocks) it is likely that some packets are
dropped.

So on a heavy network attack a lot of packets may be dropped due to the fact that snort is working on the output
processing. On the other hand if there is no traffic snort will be idle.

One solution is to decouple the output plugins from snort. Why should snort bother about the various formats of
alerts or how to insert the packets in a database? It would be of great advantage to restrict snort to only detect
alerts.

This is whereFLoPstarts. It decouples the output plugins from snort, gathers all alerts and sends them to a
central server. At the server they where collected and inserted into a database for further processing. Additionally
all alerts are buffered until they are processed (or where explicitly dropped by a confiugartion parameter if too
many alerts are buffered).

1

Chapter 2. Programs of the project

The project actually consists of six programs and one patch for snort:

The patch and programs ofFLoP

snort-2.x.x_patch

This patch adds an output plugin to write the alerts via an unix domain socket1

sockserv

This program generates the unix domain socket to which snort can write the alerts. The received alerts are
buffered and transmitted to a central server runningservsock.

servsock

On thecentral serverall alerts from all remote sensors are collected and written to adatabase. Additionally
alerts with high priority can be written to an unix domain socket where another program receives these
alerts and send them via email to a list of predefined recipients.

alert

Alerts received via an unix domain socket are collected and send to a list of recipients.

drop

If too many alerts are buffered a memory shortage can arise. To avoid this a low and high water mark can be
set. If more than high water alerts are in the buffer as many alerts are written to an unix domain socket until
the low water mark is reached. This program collects these alerts and sends them via email to a list of
recipients or prints them tostdoutif sending of an email fails.

getpacket

There exists a possibility to store additonal information about the captured network packets in the database.
If these informations are available then this program can rebuild apcapfile consisting of the original
captured network packet. This file can be used with programs like tcpdump or ethereal.

fpg

This False-Positive-Generator takes asnortconfiguration file and creates for nearly each rule a network
packet able to raise an alert. This program is useful for performance and stress tests of the whole chain
starting at snort and ending at the database.

The next sections explain all these programs, how they work and how they can be configured.

Notes
1. All used unix domain sockets are of typedatagramto avoid blocking if one process creating the socket is not

available.

2

Chapter 3. The snort patch

This patch is needed to activate an output plugin which enables snort to write all alert information and the
suspicious network packet to an unix datagram socket. To apply the patch you need only to change to the snort
source directory and use the command:

snort-2.x.x$ patch -p1 < /path/to/FLoP/patches/snort-2.x.x_patch

After configureandmake thesnort program understands a new option in thesnort.conf file:

output alert_unixsock_db: /tmp/snort[, all|log|alert]

The parameter to this output plugin describes where the unix domain socket should be found. Since we use unix
domain sockets of typedatagramit is not required that this socket exists. If there is no such socket, snort will
simply write a warning message and continue to work. If the socket gets created in between, snort will use it. So
snort is never blocked by this output plugin (except the reading process is explicit blocking).

Since snort-2.1.3 there exists also the possibility to write alternatively thelog packets to the socket or both. If
all is mentioned then only one packet is written to the socket if they are in both output chains.

Further there is the option-Q added to snort to avoid writing any alerts to the file system. (With snort-2.3 this
option will be renamed to-Y since-Q is used for the snort-inline part.

The log facility is necessary if you want to store tagged packets or packets of adynaimcrule in the database.
Take also a look at the programgetpacket.

3.1. Statistics with snort

The patch additionally extends snort by a-Z option. This enables snort to write statistical inforamtion about the
actual status to the unix domain socket/tmp/stats . These informations include the number of received and
dropped packets, how many alerts where generated and which protocols where involved since the last time. The
time intervall is the parameter after this option.

With the command

snort -Z 30

the statistics are written every 30 seconds to the special unix datagram socket. Again, if this socket is not
available, nothing will be written but snort will still work.

This information can be used in conjunction with theRRDTool
(http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/) to create some nice pictures like:

3

Chapter 3. The snort patch

Statistics picture from snort generated withRRDTool

Example 3-1. A simple perl script to feed anRRDtooldatabase with a time step of 30 seconds. Here we
only account for the receive rate but it is easily extended to the other data.

#!/usr/bin/perl
use IO::Socket;
use IO::Handle;
use Socket;
use RRDs;

$UXSOCKADDR="/tmp/stats";

unlink($UXSOCKADDR);
$sock = IO::Socket::UNIX->new(Local => $UXSOCKADDR, Type => SOCK_DGRAM) ➊

or die "Can’t bind to Unix Socket: $!\n";
$sock->setsockopt(SOL_SOCKET, SO_RCVBUF, 65440); ➋

print "Ready to accept conntections!\n";

$RRDrecv="recv.RRD";

if (! -e $RRDrecv) ➌

{
$CreateRRD=true;

}
while (1) {

$len=44;
$sock->recv($input,$len);
$TotalEvents++;

@fields=unpack(" L L L L L L L L L L L",$input);
print "\n";

if ($CreateRRD eq true)
{

RRDs::create ("$RRDrecv", "--start", "$fields[0]", "--step", "30", ➍

"DS:Statistics:GAUGE:61:0:U", "RRA:AVERAGE:0.5:1:100",
"RRA:AVERAGE:0.5:10:24", "RRA:AVERAGE:0.5:20:144");

$CreateRRD=false;

4

Chapter 3. The snort patch

}

RRDs::update ($RRDrecv, "$fields[0]:$fields[1]"); ➎

}

➊ Open an unix domain socket of typedatagramto be able to receive data from snort.

➋ Increase the receive buffer of the socket.

➌ Test if a RRD database exist, if not we have to create one.

➍ There is no RRD database, so we create one here.

➎ Update the RRD database.

5

Chapter 4. Configuration of FLoP

After the snort sources are patched you have to runconfigure in the snort source directory. This will create the
file config.h which is needed to compile FLoP. Both,snort and FLoP should use the same types of variables.

After this is done change to the FLoP directory and call hereconfigure. You have to mention the path to the
snort sources with the directive--with-snort= /path/to/snortand at least one database: Either Mysql
(--with-mysql= /path/to/mysql) or PostgreSQL (--with-postgres= /path/to/postgresql).

Further you have to decide if the features and programsdrop (--enable-drop), alert (--enable-alert),
getpacket(--enable-getpacket) andfpg (--enable-fpg) should be compiled. To buildfpg you must have
libnet version 1.1 or newer.

4.1. Some notes on the configuration options

Whereas the path to the snort sources is required some others are optional and some are recommended.

The configure options in detail

--prefix= DIR

Gives the prefix to the installed binary, manual pages, documentation files and configuration files. These are
stalled inDIR/bin, DIR/man,DIR/doc andDIR/conf.

--with-snort= DIR

This option is required.DIR should point to the configured snort sources. These are required to build the
FLoP package. At least we needconfig.h of the snort sources. Additionally there is a little test to see if
the patch is applied.

--with-mysql= DIR

This option activates the support for theMySQLdatabase.DIR should point to theMySQLdirectory where
the header and library files can be found.

--with-postgres= DIR

This option activates the support for thePostgreSQLdatabase.DIR should point to thePostgeSQLdirectory
where the header and library files can be found. Note: You can activate both databases. You have to decide
within servsock.conf which one should be used.

--with-libbind

This enables the use of libbind during the link process. Since the programs can use the library functions
getipnodebyname() andgetipnodebyaddr() which are not part of every operating system we can use
this library for these functions. If this option is not activated then the functionsgethostbyname() and
gethostbyaddr() are used instead.

--enable-drop

This enables the build of the programdrop and activates the interfaces insockservandservsock. Note:
You have still to activate this feature via the command line options or the configuration file. So it is save to

6

Chapter 4. Configuration of FLoP

enable this feature.

--enable-alert

This enables the build of the programalert and activates the interfaces insockservandservsock. Note:
You still have to activate this feature via the command line options or the configuration file. So it is save to
enable this feature.

--enable-getpacket

This enables the build of the programgetpacketwhich is able to rebuild a file with the network packet in
pcapformat from the database. Note: You have to extend the database scheme to use this feature and have
to adviseservsockto store the additional needed information in the database.

--enable-fpg

This enables the build of the programfpg. To compile this program you need the libnet library version 1.1
or newer.

On some systems the database library and header files are already part of the operating system. There it can
happen that for example the mysql header files are not found in/path/to/mysql/include/ . Here you may
find them in/usr/include/mysql where the compiler will not search for this headers by default. Thererfore it
may be useful to set theCPPFLAGStogether with theconfigurecommand:

CPPFLAGS=-I/usr/include/mysql ./configure --with-mysql=/usr ...

Additionally the optionsCFLAGSfor compiler flags andLDFLAGSfor linker options may be useful.

For further information read the fileINSTALL and the variousREADMEfiles of the distribution.

7

Chapter 5. The programssockserv and servsock

These two programs are very similar and work with two parallel threads. One thread receives the alerts and the
other processes these data.

The principal of thesockserv/servsockprocess.

The first thread of the programsockserv1 receives alerts fromsnort and stores them in a buffer in memory. The
second thread takes these alerts and forwards them viaTCP/IPto theservsock2 program. This program consists
of a master program waiting for connections fromsockservprocesses of remote sensors. For each connection
one process is forked off. Each of these processes consist of two threads. One thread simply receives the
incoming alerts, the second stores them to the database.

5.1. The details of sockserv

This program provides an unix domain socket forsnort. One thread simply receives alerts via this socket and
stores them in memory, see picturesockserv/servsockprocess.

Through the threading design and the use of a memory buffer the risk of loosing alerts is minimized. The output
plugins fromsnort are reduced to a simple write statement on an unix domain socket. If more alerts are
generated thansockservcan send to thecentral serverthe alerts are buffered in memory until the attack flood
decreases.

To reduce the problem on memory shortage due to an high attack flood, the maximum number of alerts in the
buffer can be limited. This is done via two parameters, theLowWater andHighWater marks. If more alerts
than theHighWater mark are buffered in memory as many alerts are dropped until theLowWater mark is
reached. All dropped alerts are written to an unix domain socket. The programdrop is able to create such a
socket, receive these alerts and send them via email to a list of recipients.

If eithersockservcan not connect toservsockon startup or the connection is closed during runtime the program
tries to reopen the connection after a short delay for several times.

8

Chapter 5. The programssockservandservsock

All output can be redirected tosyslog, using the facilityLOCAL0and levelINFO. A daemon modeis also
supported. Finally statistics could be printed on a periodical basis or once by sending a SIGUSR1 to the
sockservprocess.

5.1.1. Options

There are several options available:

sockserv [-bvhl] [-A delay] [-D dropsocket] [-H HighWater]
[-L LowWater] [-m mode] [-M maxtry] [-p port] [-P pidfile]
[-s snortsocket] [-S server] [-w dir] [-W waittime]

The sockserv options in detail

-A delay

Print everydelay seconds statistics about received, sent and dropped alerts. The change of these values
betweendelay seconds is printed in brackets. See also option-l .

-b

Start the process in the background:daemon mode. This automatically activates option-l .

-D dropsocket

If there are more thanHighWater alerts buffered then the newest alerts are dropped todropsocket until
theLowWater mark is reached.

-h

Print a help message and exit.

-H HighWater

Sets theHighWater mark, see option-D . The default value is 10000.

-l

Log statitiscs tosysloginstead ofstdout . See also option-A .

-L LowWater

Sets theLowWater mark, see option-D . The default value is 9900.

-m mode

Sets the umask tomode for the daemon mode. This affects the mode for the created unix socket and PID
file. The mode can be either given inascii, octal (with leading0) or hex(with leading0x) format.

-M maxtry

Sets the maximum number of tries to (re-) connect to theserver . See also option-W.

-p port

Defines on whichport to try to reach theserver runningservsock. See also option-S .

9

Chapter 5. The programssockservandservsock

-P pidfile

Filename to store the PID. Note: This file must be writeable by the user runningsockserv!

-s snortsocket

Defines the name and directory where the unix domain socket is opened for snort. The default is
/tmp/snort .

-S server

Defines the server runningservsock. The name can be either a full qualified domain name or an IP address.
The default is10.200.200.1 . See also option-p .

-w dir

Sets the working directory in daemon mode todir . The default is to use the current working directory. It is
useful to choose/ to avoid blocking of mounted filesystems.

-W waittime

Time in seconds to wait between two tries to connect to the server. See also option-M.

5.1.2. Signalhandling

Currently the following signals are used withsockserv:

Signals used with sockserv

SIGUSR1

Print statitics about received, sent and dropped alerts.

SIGINT

Cancels the process, prints the final statistics and performs a clean exit. Thesocketname andpidfile
are removed.

SIGTERM

This signal results in the same behaviour asSIGINT .

SIGPIPE

This signal is ignored. If theservsockprogram is interrupted during the data is sended. In this case we
simply try to open a new connection and therefore we have to ignore this signal.

SIGHUP3

If this signal is receivedsockservstops and restarts. First, if enabled, all buffered alerts are dropped via
dropsocket and the final statistics are printed. Furthersocketname andpidfile are removed to
enable a restart of the program. (Otherwise the program would fail since the id does not change!)

SIGALRM

This signal is used to print statistics on a periodically basis.

10

Chapter 5. The programssockservandservsock

5.1.3. Some additional notes

Thedrop feature is not enabled by default and has to be compiled in separately. If it is not compiled in then the
options-D , -L and-H are missing in the output of the-h option. It is highly advisable to choose a very large
HighWater mark to buffer as many alerts as possible. This will reduce the possibility of information loss. On
the other hand the difference betweenHighWater andLowWater should not be too large. To minimize
information loss the alerts are spooled viadrop to a mail server. Normally this server is either located on the
central serveror is reached via this server. If there are too many alerts spooled todrop the emails become
unreadable long.

Problems should only arise if the connection to theservsockprogram is lost for a longer period. But if there are
network problems then it is alike thatdrop will fail too. If this happens then the alerts are written either tostdout
or syslog.

Be cautious: With increasing buffer usage the memory consumption raises with about 3 kB for each alert
(actually 1360 bytes per alert plus payload). But this memory is shared with thesnort process. So set the
HighWater to a value where it is safe for the snort process.

If a pid file exists then the program checks only for a running process with this PID. If one process is found the
program exits. There is no check for which program is running, only if one runs!

5.2. The details of servsock

This program provides an TCP socket forsockserv. After asockservprocess has successfully connected a child
process is forked off for this communication. The child process consists of two threads. One thread simply
receives alerts via the TCP socket and stores them in memory, see picturesockserv/servsockprocess. The
second thread feeds the stored alerts to adatabase.

To successfully connect there are a few things which must be fullfilled:

• If the endianess of the sensor and central server are different then a connection is permanently refused. This
does not work.

• There is only on remote sensor with the same IP address allowed. If a second sensor with the same IP address
tries to connect the access is denied.

• If there are still not yet processed data from the last connection between the remote sensor and the central
server then the connection is as long refused as these data are not stored in the database

• If the database is not available if a sockserv process tries to connect then the connection is refused temporarily.

• If there is a swap file available, then the connection is temporarily refused and the data of the swap file is
inserted into the database.

Through the threading design and the use of a memory buffer the risk of loosing alerts is minimized. If more
alerts are available thanservsockcan store to thedatabase4 the alerts are buffered in memory.

11

Chapter 5. The programssockservandservsock

To reduce the problem on memory shortage due to a high overload, the number of alerts in the buffer can be
limited. This is done as withsockservvia two parameters, theLowWater andHighWater marks. If more
alerts than theHighWater mark are buffered in memory as many alerts are dropped until theLowWater mark
is reached. All dropped alerts are written to an unix domain socket. The programdrop is able to receive this
alerts and send them via email to a list of recipients.

If eithersockservcan not connect toservsockon startup or the connection is closed during runtime the program
tries to reopen the connection after a short delay for several times.

All output can be redirected tosyslog, using the facilityLOCAL0and levelINFO. A daemon mode is also
supported. Finally, statistics could be printed on a periodical basis or once by sending aSIGUSR1to theservsock
master process. This process will gather the statitistics from all child processes.

5.2.1. Options

There are several options available:

servsock [-bdfhlnTuv] [-A delay] [-c config] [-D dropsocket]
[-H HighWater] [-L LowWater] [-m mode] [-M priority]
[-p port] [-P pidfile] [-s snortsocket] [-S server]
[-U alertsocket] [-w dir] [-W SwapDir]

The servsock options in detail

-A delay

Print everydelay seconds statistics about received, sent and dropped alerts. The change of these values
betweendelay seconds is printed in brackets. See also option-l .

-b

Start the process in the background:daemon mode. This automatically activates option-l .

-d

Dump the actual configuration on startup. This is useful if both, a configuration file (see) and command
line options are used in combination and for debbuging purposes

-c config

Specifies which configuration file should be used. The default isservsock.conf

-D dropsocket

If there are more thanHighWater alerts buffered then the newest alerts are dropped todropsocket until
theLowWater mark is reached.

-f

Store additional information in the database so that apcapfile can be created with the programgetpacket.
Note: You need an extended database schema to use this option. See the fileREADME.payload in the
distribution.

12

Chapter 5. The programssockservandservsock

-h

Print a help message and exit.

-H HighWater

Sets theHighWater mark, see option-D . The default value is 10000.

-l

Log statitiscs tosysloginstead ofstdout . See also option-A .

-L LowWater

Sets the LowWater mark, see option-D . The default value is 9900.

-m mode

Sets the umask tomode for the daemon mode. This affects the mode for the created unix socket and pid
file. The mode can be either given inascii, octal (with leading0) or hex(with leading0x) format.

-M priority

Sets the required periodity for alerts to be written toAlertSocket . The programalert is able to read these
alerts and send emails to a list of recipients.

-n

Do not resolve the full qualified names of the sensors, use the IP addresses instead. This will avoid conflicts
with thedatabaseif on a new connection the DNS resolution fails or resolves to another name.

-p port

Defines on whichport servsockshould listen, see also option-S .

-P pidfile

Filename to store the PID. Note: This file must be writeable by the user runningservsock!

-r

Store additional information in the database so that apcapfile including all tagged packets relating to an
alert can be created with the programgetpacket. Note: You need an extended database schema to use this
option. See the fileREADME.payload in the distribution.

-s socketname

Defines the name and directory where the unix domain socket of thedatabaseis opened. A value ofNULL
results in an internalNULLpointer, this is useful in combination withPostgreSQL.

-S server

Defines the interface whereservsockshould listen on. The name can be either a full qualified domain
name5 or an IP address. The default is0.0.0.0 to bind on all available and configured interfaces. See also
option-p .

-T

Enable trust modus for thedatabase. If set, it is assumed that the alert description is already part of the
database. If this is not the case, all these informations are inserted. So it is safe to enable this feature unless
the transfer of alert message is disabled insnort. But this is a veryexperimentalfeature and is usually
disabled by default. (But would save 256 Bytes on the wire!)

13

Chapter 5. The programssockservandservsock

-U alertsocket

Specifies where the unix domain socket of the alert program can be found, see also-M.

-u

Disables the use of thealertsocket . This is useful if the alert is activated in the configuration file but
there is noalert program running. So it is only useful for debugging.

-v

Print version information.

-w dir

Sets the working directory indaemon modeto dir . The default is to use the current working directory. It is
useful to choose/ to avoid blocking of mounted filesystems.

-W SwapDir

Sets the directory where the swap filesensor_ SensorNameis created and alerts are buffered if the
database connection is lost.

5.2.2. The configuration file of servsock

Additionally to the command line arguments there are some options which must be set via a configuration file.
At least thedatabaseconfiguration has to be set in the configuration file6.

The command line options have precedence above the settings in the configuartion file. If an option is mentioned
on the command line this value is used regardless of the settings in the configuration file.

On the other hand all parameters of the command line can be set in the configuration file (except option-u). So
the command line options are more suitable for quick tests.

The format of the file is simple, the first word is a keyword and the second is the value. They are separated by a
colon (:) or equal sign (=). White spaces are allowed in any number.

The values can be put in single (’) or double (") quotes, all between is used as the value with one exception. This
exception is the comment sign (#). All entries after this sign are ignored. To use the command sign it has to be
escaped with a backslash: \#.

To use white spaces in a value they must be surrounded by quotes.

So all this results in a value with space, exept the last one without quotes. This will result inspa :

’spa ce’ = "spa ce" = spa ce

All keywords are case insensitive (but not the values!).

14

Chapter 5. The programssockservandservsock

The parameters of the configuration file for servsock in detail

DBuser : name

Specifies the name of thedatabaseuser who is allowed to doINSERTs,SELECTs andUPDATEs of tables.
The default issnort.

DBpassword : password

Specifies the password used among with theDBuser name to connect to thedatabase. Note: An empty
password has to be represented by empty quotes, which is the default.

DBname: name

Name of thedatabasewhereservsockshould insert the alerts, defaults tosnort.

DBtype : name

Type of thedatabaseto use. Actually onlyMySQL(http://www.mysql.com/) andPostgres

(http://www.postgresql.org/) are supported and have to be enabled at compile time ofservsock. No default
is set since it is not clear whichdatabasesupport was enabled at compile time ofservsock.

DBencoding : name

Defines the encoding scheme wich is used to insert the payload into thedatabase. Allowed values arehex ,
base64 andascii . Thebase64 encoding requires less memory in thedatabasebut it makes it difficult to
search for special entries in the payload. Theascii only stores ascii characters to the database, all binary
data is replaced by a dot. So the only really useful option is thehex scheme which is the default7.

DBtrust : value

A non-zerovalue enables thetrust modus for the database. If this modus is enabled it is assumed that all
possible signatures are already part of the database. This will result in slight fasterINSERTs since less
detailedSELECTstatements are needed8. It is safe to enable this even if you are not sure, missing signatures
will still be inserted. The equivalent command line is-T .

DBtrans : value

A non-zerovalue enables the use oftransactionstogether with the database. If you use the MySQL
database you have to use tables of typeInnoDB, otherwise the transactions are simply ignored.

PIDFile : pidfile

Specifies which file should be used to store the PID. This file must be writeable by the user running
servsock! This correspond to option-P .

SocketName : socketname

This specifies where to find the unix domain socket of the database. If the wordNULL (all capital!) is given,
the database libraries find the socket by their own mechanism. This is useful in combination with the
PostgreSQLdatabase. This is equal to the-s .

ServerName : name

Defines on which interface defined by the addressservsockshould listen on. Possible values forname are
either full qualified names (not very useful) or a dotted IP address. The default is0.0.0.0 to listen on all
available interfaces.

ServerPort : value

Defines the port whereservsockwill listen on. The default is port1234 . Compare to option-p .

15

Chapter 5. The programssockservandservsock

AlarmDelay : value

Write everyvalue seconds statistics of received, sent and dropped alerts. In braces the differences to the
last output are printed. See option-A .

Syslog : value

If the value is non-zero then the statistics are logged viasyslogand not printed tostdout . The facility is
LOCAL0and the level isINFO. Compare to option-l

FQNSensor : value

With avalue of zero the IP address of the sensor is used as sensor name in conjunction with thedatabase.
The equivalent command line option is-n .

AlertSocket : alertsocket

Name of the unix domain socket where alerts with high priority are written to. See option-U .

UnixPriority : value

The value determines the minimum priority where alerts are additionally written to theAlertSocket 9. The
command line equivalent is the option-M.

DropSocket : dropsocket

Name of the unix domain socket where alerts are dropped to if the number of queued alerts reaches the
HighWater mark. Compare to option-H .

HighWater : value

If the number of queued alerts reaches thisvalue thenservsockbegins to drop alerts to theDropSocket .
This corresponds to option-H .

LowWater : value

Thisvalue must be smaller thanHighWater 10. If the HighWater mark is reached so many alerts are
dropped to theDropSocket until this LowWater value is reached. This corresponds to option-L .

DaemonMode: value

A non-zerovalue enables thedaemon mode, the program forks into the background. This automatically
activates theSyslog option. See option-b .

Umask: mode

Sets theumaskto mode for theDaemonMode. This affects the mode for the createdPIDFile . Themode
can be either given inascii, octal (with leading0) or hex(with leading0x). This is equal to the option-m.

SwapDir : SwapDir

Sets the directory where the swap filesensor_ SensorNameis created. This file is used to swap out alerts if
the database has gone and is read in again if the database is available and the remote sensor connects again.
The default is to use/var/tmp . See option-W.

FullPayload : value

Store additional information in the database so that apcapfile can be created with the programgetpacket.
Note: You need an extended database schema to use this option. See the fileREADME.payload in the
distribution and option-f .

16

Chapter 5. The programssockservandservsock

Reference : value

Store additional information in the database so that apcapfile including all tagged packets can be created
with the programgetpacket. Note: You need an extended database schema to use this option. See the file
README.payload in the distribution and option-r .

5.2.3. Signalhandling

Currently the following signals are used withservsock:

SIGUSR1

If send to the master process (seePIDFile) statitics about received, sent and dropped alerts of each
servsock-sockservpair are printed. Each of the forked off processes ingore this signal.

SIGUSR2

If the master process receives aSIGUSR1signal it sends aSIGUSR2signal to each child process handling a
servsock-sockservpair. Each child process prints then its statistics. The master process ignores this signal.

SIGINT

Cancels the master process, prints the final statistics and makes a clean exit. Thesocketname and
PIDfile are removed. The child processes dump the buffered alerts to the swap file and exit.

SIGTERM

This signal results in the same behaviour asSIGINT .

SIGHUP3

If this signal is received by the master process thenservsockstops each child process by sending aSIGTERM

signal and restarts itself11. First all buffered alerts are written to the swap files and the final statistics are
printed. FurtherSocketName andPIDFile are removed to enable a restart of the program. (Otherwise the
program would fail since the PID did not change!) The child processes simply ignore theSIGHUPsignal.

SIGALRM

This signal is used to print statistics on a periodically basis.If this signal is send to the master process it is
forwarded to all child processes.

5.2.4. Some additional notes

Thedropandalert features are not enabled by default and have to be compiled inservsockseparately. If it is not
compiled in then the options-D , -L and-H are missing for thedrop and the options-M, -u and-U are missing
for thealert program in the output of the-h option.

In contrast tosockservtheLowWater andHighWater marks have to be choosen with more caution. First there
are more processes running than theservsockprocesses especially thedatabase. Further the bottleneck is not the
network, it is usually thedatabase. So it is quite normal that here the number of buffered alerts increase rapidly
on heavy attacks.

17

Chapter 5. The programssockservandservsock

Since the sensor name is taken from the IP address of the computer runningsockserv(the remote sensor) there is
only onesockservinstance per IP address allowed. Otherwise there will be a lot of collisions of inserts related to
thedatabase. (Two different sensors with the same name try to insert two different alerts with the same database
Sensor ID, for example.)

If the connection dies,sockservopens a new connection and a newservsockprocess is forked off. But if the old
servsockthread feeding thedatabasedid not finished yet there arises a problem like the same sensor is logging
twice times. Thereforeservsockhas a list of up to25 running child processes with the sensor IP they are dealing
with. So if there is still one thread running any new connection of asockservprocess with the same IP address is
rejected!

On startup a handshake must be fullfilled. During this phase the endianess of both partner, the availability of the
database and the presence of a non-zero swap file are checked. Depending on the result a conncetion is either
allowed, temporarily rejected or permanently denied.

If a SIGHUP3 signal is received by the process with the id ofPIDFile all child processes are terminated first. If
there are buffered alerts it can take some time until all of them are written to the swap files. So a time delay on
restart is not uncommon.

If a PIDFile exists the program checks for a running process with the id of this file. If one is found the program
exits to avoid running the same program twice. But there is no check for which program is running, only if there
is one in the process list!

Notes
1. This program povides an unix domainsocket and connects to aserver.

2. This program povides anserver and writes the alerts via an unix domainsocket to the database.

3. One important thing to obey is that either the program has to be started with absolute path or relative to the
daemon working directory (option-w). Or the program has to be started without any path information and
should be found in the systemPATH. Otherwise the program can not find the own executable and will fail.

4. Sometimes databases hung on many inserts due to things like internal garbage collection. In addition there
are many tables which have to be filled in for each alert. All this will slow down the insert rate of the
database.

5. This not really useful since central server have usually more than on interface or you need a full qualified
domain name for only this interface. Most name server reolve IP addresses in a round robin procedure for
more than one IP address. So the interface on whichservsockbounds would not be unambigous.

6. Especially thepasswordfor the database should not appear in the processlist.

7. This option should be removed in the future in favour of only usinghex .

8. This behaviour is a little bit different to the default one. Here we check or all values like revision and priority
even if they are zero. In the other case we check forNULLvalues if they are zero. Indeed I think if the values
are not set in the rule (aka the value is zero) this value should be inserted with the rule in opposite to keep it a
NULLvalue. So maybe this will change in the near future.

9. This keyword should be replaced byAlertPriority in a future release.

10. The mimimum difference between this two marks should be at least greater than 10.

11. This results in a time delay for a restart since first it must be waited until all child processes exit.

18

Chapter 6. The programs alert and drop

These two programs are very similar and are compiled out of the same source file. They provide an unix domain
socket to receive alerts and try to send them via email to a list of recipients.

The alerts are buffered in memory and send via email to a list of recipients. This can be triggered either on a
periodically basis or if a given number of alerts is reached. Both variants can be activated separately but it is a
good idea to use both. The time interval is useful to collect alerts instead of sending one mail for each alert
which could result in a denial of service. The maximum number of alerts has the advantage to keep the used
memory small and the emails in a readable size. Otherwise it could happen that too many alerts have to be stored
in memory until an email could be send.

6.1. The details of alert

This program works in contrast todrop only with servsockand receives alerts via the unix domain sockets of
priority equal or higherUnixPriority . See also option-M of servsock.

The primary idea of this program is to have a separate mechanism to inform about critical alerts. Since it is very
likely that thedatabaseis filled with a lot of less important alerts it is quite possible to either oversee the
important alerts or to find them too late.

If the progam fails to send the emails it tries it again later. This is done up to five times. This number can be
adjusted via the command line option-M or theMaxCount keyword.

If it is not possible to send an email during this time the program simply exits. Another process should inform an
operator about this problem.

6.2. The details of drop

This program works in contrast toalert with both,sockservandservsock. It receives alerts via the unix domain
socket if theHighWater mark of queued alerts insockserv or servsock are reached.

The primary idea of this program is to keep at least minimal informations about alerts. If there are too many
alerts buffered some processes could fail due to memory shortage. So there should be a mechanism to drop some
alerts to keep the buffer size limited. These alerts will not be inserted in thedatabasebut are mailed to a list of
recipients.

If the progam fails to send the emails it tries it again later. This is done up to five times. This number can be
adjusted via the command line option-M or theMaxCount keyword.

19

Chapter 6. The programsalert anddrop

If it is not possible to send an email during this time the program writes the content of this email tostdout .
Another process should inform an operator about this problem. In contrast toalert does this program not exit, it
simply continues to work.

6.3. The command line options of alert and drop

Both programs use the same command line options, there is no difference between these options.

drop | alert [-bDFhlpTvV] [-A delay] [-c config] [-d domain]
[-f from] [-L level] [-m mode] [-M max] [-p port]
[-P PIDfile] [-r rcpt] [-s socket] [-S server] [-w dir]

The alert and drop options in detail

-A delay

Try everydelay seconds to send an email if there are any alerts in the buffer.

-b

Start in daemon mode, switch to a background process. This automatically activates the option-l .

-c config

This defines the name of the configuration file to use.

-d domain

Usedomain asHELOstring on a connection to theMailServer, see option-S .

-f from

Sets the sender address of the emails tofrom .

-F

Try to resolve the sensor names via DNS.

-h

Print a help text and exit.

-l

Print viasysloginstead ofstdout .

-L level

If a number oflevel alerts are in the buffer, send an email. A value of zero disables this feature.

-m mode

Sets the umask tomode for thedaemon mode. This affects the mode for the created unix socket and PID
file. The mode can be either given inascii, octal (with leading0) or hex(with leading0x) format.

-M maxcount

Specifies the maximum number of tries to send an email. If still no email could be send the programalert
exits and the programdrop prints all alerts tostdout or syslog, see option-l .

20

Chapter 6. The programsalert anddrop

-p port

Try to reach themail serveron thisport . The default is port 25, see also option-S .

-P PIDFile

Specifies which file should be used to store the PID. This file must be writeable by the user running
alert/drop!

-r recipient

Sets the address of one recipient for the emails. This option can be used several times to build a list of
recipients.

-s socketname

Specifies which unix domain socket of typedatagramshould be opened to listen for alerts.

-S server

Specifies the mail server which should be used to send the emails. This server should allow relaying for the
server runningalert or drop.

-v

Print version information and exit.

-V

Activates the verbose mode, some useful informations are printed if an email is send. This is useful for
debugging if there are any problems with the mail server.

-w dir

Sets the working directory in daemon mode todir . The default is to use the current working directory. It is
useful to choose/ to avoid blocking of mounted filesystems.

6.4. The configuration file for alert and drop

The format of the configuration file is the same as forservsockandsockserv.

The parameters of the configuration file for alert and drop in detail

AlarmDelay : time

The program will check everytime seconds for the presence of received alerts. If there are any an email is
send. The default is 5 minutes (300 seconds). The equivalent command line option is-A .

AlarmLevel : level

If the number of received alerts reacheslevel than an email is sent regardless of the status of
AlarmDelay . The default is 0 which disables this feature. But it is recommed to use this feature since it
limits the number of alerts which are buffered in memory. The command line option is-L .

21

Chapter 6. The programsalert anddrop

DaemonMode: value

A non-zero value enables the daemon mode. The program forks off in the background and detaches from
the terminal. See also optionDaemonDir andUmask. This automatically enables also the optionSyslog .
The command line option-b .

FQNNames: value

A non-zero value enables resolving of full qualified names of the reporting sensor. To reduce CPU usage
this values are cached in ann internal list1. See also option-F .

MailServer : name

Specifies the server which should be used for relaying of the emails. This server should allow relaying for
the different hosts runningsockservandservsock. The default server islocalhost . The command line
option is-S .

MailPort : number

Specifies that the mail server is reached via portnumber . The default is port25. The command line option
is -p .

MailRecipient : address

Sets the address of one recipient of the emails. This option can be used several times to build a list of
recipients. This is equal to the command line option-r .

MailSender : address

Sets the address of the sender of the emails. The command line option is-f .

MailDomain : domainname

Specifies the domain name which should be used in a mail session on startup (HELOstring), see option-d .

MaxCount : count

Specifies the maximum number of tries to connect to the mailserver and deliver mails. Aftercount tries
the programalert terminates! The programdrop simply writes all alerts to syslog or stdout and continues
to work. See option-M.

PIDFile : filename

Specifies which file should be used to store the PID. This file must be writeable by the user running
servsock! This correspond to option-P .

SocketName : socket

This specifies which unix domain socket should be opened forsockservandservsock. This is equal to the
-s .

Syslog : value

If the value is non-zero then all output is written tosyslogand not printed tostdout . The facility is
LOCAL0and the level isINFO. Compare to option-l

Umask: mode

Sets theumaskto mode for theDaemonMode. This affects the mode for the createdPIDFile and unix
domain socket (seeSocketName). Themode can be either given inascii, octal (with leading0) or hex
(with leading0x). This is equal to the option-m.

22

Chapter 6. The programsalert anddrop

DaemonDir : directory

Sets the working directory in daemon mode todaemondir . The default is to use the current working
directory. It is useful to choose/ to avoid blocking of mounted filesystems. See option-w .

6.5. Signalhandling

Currently the following signals are used withalert anddrop:

SIGINT

Cancels the program, the socket and PID file are removed and the program exits. The programdrop prints
all buffered alerts, either viastdout or syslog, see option-l or keywordSyslog , before it exits.

SIGTERM

This signal results in the same behaviour asSIGINT .

SIGHUP3

If this signal is received the unix domain socket will be closed, the socket and PID file removed and thre
porgram gets restarted. The programdrop prints first all buffered alerts.

SIGALRM

This signal is used to print statistics on a periodically basis. If this signal is send to the master process it is
forwarded to all child processes.

Notes
1. If the DNS name changes while the program runs, the old names are still used.

23

Chapter 7. The program getpacket

This program can build a network packet inpcapformat which can be used by an analyzer liketcpdump or
ethereal.

This requires some additional options to be used.

• The standard database scheme as shipped with snort must be extended.

• The payload has to be stored inhexformat.base64is not supported yet andascii is useless.

• The option-f of servsockor the parameterFullPayload in servsock.conf have to be enabled when the
alert ist stored in the database.

• Actually onlyethernetis supported for the link layer. But to use another link layer is not really a problem.

The advantage of this approach is that the protocol analyzing mechanisms of programs likeetherealare far
better than it is possible withACID. For example think of DNS queries or responses.

7.1. The extension of the database scheme

To store the additional header and pcap information in the database the normal scheme (as part of snort) must be
extended. These extensions work well even with programs likeACID.

These extansions must be done within the database, either withmysql or psql. If you have choosen the right
database then enter at the command prompt the following commands:

ALTER TABLE data ADD COLUMN data_header TEXT;

This command adds a column for the missing packet headers. The payload stored by the normal process contains
only the protocol payload of the alert. ATCPalert only stores the payload embedded in theTCPstream, noTCP
header norIP header nor the link level data.

ALTER TABLE data ADD COLUMN pcap_header TEXT;

This column stores thepcapheader containing the time when the packet was captured and the snaplen.

ALTER TABLE schema ADD COLUMN full_payload SMALLINT;

With this column it is possible to note that the database is capable of storing the extended data.

UPDATE schema SET full_payload=1;

This sets the capability to store the full payload. If set to 1 thenservsockwill accept the-f option or
FullPayload keyword.

24

Chapter 7. The programgetpacket

Similarily, if the -r option orReference keyword should be useable to store the reference of tagged packets
then the event table has to be extended:

ALTER TABLE event ADD COLUMN reference INT8;

And the schema table has to be extended and updated so that we can query this settings.

ALTER TABLE schema ADD COLUMN reference SMALLINT; UPDATE schema SET reference=1;

If all this commands were applied to the database you have still to activate the storage of the additional data
within servsock.

7.2. The command line options of getpacket
getpacket [-ahtv] [-c ConfigFile] [-C PacketCount] [-S SensorID] [-w DumpFile]

The getpacket options in detail

-a

Build a pcap file of all packets with the same revision (tagged packets) which contain SID and CID. The
option-t is automatically activated. Therefore you need an extended database scheme (see
README.payload).

-c ConfigFile

Specifies which configuration file should be used. The default isgetpacket.conf in the installation
configuration directory. It is also possible to use theservsock.conf of servsock. The not needed
keywords are ignored, only a warning is printed tostdout . This configuration file contains the data to
needed to access the database.

-CCounterID

Specifies the counterCID of the alert in the database. Together with the sensor IDSID this data is
unambiguous specified.

-S SensorID

Specifies the ID of the sensorSID in the database. Together with theCID is the data is unambiguous
specified.

-t

Specifies that getpacket should attempt to use the reference column to include all the tagged packets
relating to the initialSID/CID pair.

-w DumpFile

Specifies which file is used to store thepcapdata. If the special file name- is mentioned then the pcap data
is written tostdout .

25

Chapter 7. The programgetpacket

7.3. The configuration file of getpacket

The getpacket keywords in detail

DBuser : name

Specifies the name of thedatabaseuser who is allowed to doSELECTs of the tables. The default issnort.

DBpassword : password

Specifies the password used among with theDBuser name to connect to thedatabase. Note: An empty
password has to be represented by empty quotes, which is the default.

DBname: name

Name of thedatabasewheregetpacketshould select the alert packet data, defaults tosnort.

DBtype : name

Type of thedatabaseto use. Actually onlyMySQL(http://www.mysql.com/) andPostgres

(http://www.postgresql.org/) are supported and have to be enabled at compile time ofservsock. No default
is set since it is not clear whichdatabasesupport was enabled at compile time ofservsock.

SocketName : socketname

This specifies where to find the unix domain socket of the database. If the wordNULL (all capital!) is given,
the database libraries find the socket by their own mechanism. This is useful in combination with the
PostgreSQLdatabase.

If the servsock.conf file is used then only the necessary keywords are used. All other options are ignored and
a warning is printed tostderr .

7.4. Some final notes on getpacket

If the full payload is not stored in the database then only an emptypcapfile only containg apcapfile header is
created. An error message is printed tostderr.

Some alert packets seem to have no payload (if you use ACID for example) but this is only for the higher level
protocols valid. Only preprocessor alerts have no payload at all since they do not act on a special network packet.

The restriction to ethernet packets is only for thepcapheader. Since the data link layer may have different sizes
this must be entered in thepcapfile header. But this information is not forwarded to the central server. But this
value can be easily adjusted.

Note: The rebuild packet also contains the MAC addresses of the ethernet packet and the capture time of the host
runningsnort.

If the reference data is not stored in the event table, getpacket cannot dump all related tagged packets in the pcap
file.

26

Chapter 8. The program fpg, af alsepositive
generator

This program1 creates network packets which raise false positive alerts withinsnort. It reads asnort
configuration file and tries to build one network packet for each rule containing all necessary values.

Nearly all kind of network packets can be created, only some newer features ofsnort like byte_test and some
ICMP types are not supported2.

8.1. The details of the fpg program

Actual fpg uses a lot of snort keywords. Up to 5 levels3 of include files are supported.

snort keywords used by fpg

• include

• alert

• log

• var

• tcp

• udp

• icmp

• any

• rpc

• msg

• content

• uricontent

• dsize

• sameip

• offset

• distance

• depth

• within

• fragbits

• id

• ip_proto

• ttl

• itype

• icode

27

Chapter 8. The programfpg, a f alse positive generator

• icmp_id

• icmp_seq

• isdataat

• flags

• flow

• seq

• ack

Options not mentioned here are simply ignored4. You have explicitly to specify a source and destination address.
So any special address in the configuration file are overwritten. So some rules will not raise alerts due to this
wrong addresses.

8.2. The command line options of fpg
fpg [-hve] [-c config] [-D count] [-n count] [-M maxpackets]

[-R msec] [-T msec] -s source -d destination

The fpg options in detail

-c config

Specifies which configuration file ofsnort should be used to generate the network packets. The default is
snort.conf in the current directory.

-d destination

This option is mandatory and specifies the destination address used in the network packets. So any
destination addresses in the configuration file are ignored.

-D count

Insert everycount packets a time delay, see option-T . This feature is disabled by default.

-e

Runfpg in an endless loop, after the configuration file is worked through the program starts again at the
beginning. The option-M ist still valid. See also option-n .

-h

Print some help information and exit.

-M maxpackets

Specifies the maximum number of network packets to be generated and sent. See also-e and-n .

-n count

Send each build network packetcount times. See also-M which is still valid and option-e .

-R msec

Specifies a random delay between two network packets of maximalmsec milliseconds. This is useful to get
a more random like traffic and to limit the rate.

28

Chapter 8. The programfpg, a f alse positive generator

-s source

This option is mandatory and specifies the source address used in the network packets. So any source
addresses in the configuration file are ignored.

-T msec

Specifies the time delay between the number of network packets specified by the-D option. This is useful to
avoid an overrun of the sending queue.

-v

Print version information and exit.

8.3. Some final remarks on the program fpg

Without any limitation and a fast machine the rate of generating network packets is much faster as the network
device is able to generate. Therefore the options-D and-T were introduced5.

The-R option was introduced to get a more realistic network traffic shape. This way it is possible to study the
behaviour ofsnort on a more realistic scenario.

The-n option is the fastest way to generate a lot of alert packets, but all are equal. If one packet is build it is sent
again several times. So all these packets look identical.

With the-e option the configuration file is walked through several times and all network packets are new build.
Any unspecified values in the configuration file are replaced by random values. So with this option the network
packets for the same rule look a bit different.

The destination address should be a valid one, there should be a target with this address. Otherwise all packets
will be blocked at the last hop with unsaturated arp requests for the destination address.

Be aware that nearly all packets will result in reset packets sent back to the mentioned source address (see option
-s).

Notes
1. To build network packets with own contents, e.g. different source addresses as the system has, TCP packets

with flags set and so on, you must be root to use this progam!

2. To raise alerts within snort-2.0.0 you have to disable thestream4 preprocssor. This preprocessor discards
all packets which are not established and the rule says the packet has to be established.

3. This is only one parameter in the source file and can be easily increased.

4. These options are ignored, not the whole rule!

5. TheC functionusleep() is used, wich can sleep for microseconds. But the finest granularity of this
function is in the range of 100Hz. Therefore we use a delay in miliseconds every few packets instead of an
usleep() after each packet is sent.

29

Chapter 9. Summary of the tools and a final survey

Thepictureshows how all these tools work together.snort watches the Ethenet wire for suspicious traffic and
reports alerts tosockservwhich forwards them toservsock. This program writes the alerts together with the
payload in adatabase.

An illustration howsockserv, servsock, alert anddrop work together1.

The programfpg can be used to generate traffic on the ethernet which should raise alerts withinsnort. These
alerts are written to the unix domain socket/tmp/snort wheresockservreads them.

One thread ofsockservreads in these alerts whereas the second thread sends the alerts via TCP (port 1234) to
thecentral sever. All alerts are buffered to account for bottlenecks in the chain.

On thecentral severthe master process ofservsockwaits for new incoming connections from remotesensors. If
a new conncetion is established a process is forked off to handle this commmunication.

One thread is of this process receives the alerts and stores them in a memory buffer. The second thread takes
these alerts out of the buffer and stores them via an unix domain socket in thedatabase. On alerts with a high
priority the details and ID of this event are written to the unix domain socket/tmp/alert .

The programalert reads this alert informations and collects them. On a periodically basis or if a given number of
alerts is reached this information is send via email to a list of recipients.

30

Chapter 9. Summary of the tools and a final survey

If there are too many buffered alerts withinservsocka drop functionality is activated. If theHighWater mark is
reached then as many alerts are written and dropped as many to/tmp/drop until theLowWater mark is reached.

The programdrop reads these alerts and collect them. It works likealert but does not store the database ID since
these alerts are not part and will not be part of thedatabase. If the sending of mail fails for several times these
alerts are written tostdout or syslogso no alerts should be lost. This behaviour is different toalert which
would simply delete these alerts2.

Notes
1. The programdrop can also work withsockservbut this is omitted in this picture.

2. The reason for this behaviour is quite simple: The programalert is intended to inform about alerts with high
priority if they arive. But these alerts are already part of the database. So if the sending of mail fails one can
still find these alerts in the database.

31

	FLoP 1.4.0
	Table of Contents
	List of Examples
	Abstract
	Chapter 1. Introduction
	Chapter 2. Programs of the project
	The patch and programs of FLoP

	Chapter 3. The snort patch
	3.1. Statistics with snort

	Chapter 4. Configuration of FLoP
	4.1. Some notes on the configuration options
	The configure options in detail

	Chapter 5. The programs sockserv and servsock
	5.1. The details of sockserv
	5.1.1. Options
	The sockserv options in detail

	5.1.2. Signalhandling
	Signals used with sockserv

	5.1.3. Some additional notes

	5.2. The details of servsock
	5.2.1. Options
	The servsock options in detail

	5.2.2. The configuration file of servsock
	The parameters of the configuration file for servsock in detail

	5.2.3. Signalhandling
	5.2.4. Some additional notes

	Chapter 6. The programs alert and drop
	6.1. The details of alert
	6.2. The details of drop
	6.3. The command line options of alert and drop
	The alert and drop options in detail

	6.4. The configuration file for alert and drop
	The parameters of the configuration file for alert and drop in detail

	6.5. Signalhandling

	Chapter 7. The program getpacket
	7.1. The extension of the database scheme
	7.2. The command line options of getpacket
	The getpacket options in detail

	7.3. The configuration file of getpacket
	The getpacket keywords in detail

	7.4. Some final notes on getpacket

	Chapter 8. The program fpg, a false positive generator
	8.1. The details of the fpg program
	8.2. The command line options of fpg
	The fpg options in detail

	8.3. Some final remarks on the program fpg

	Chapter 9. Summary of the tools and a final survey

