Background:

I've searched for a good communication class for a while and could not find one.

That's when I decided to write my own and it should be one that's easy to use.

In the newgroups there are many questions about serial communication so I thought:

make it public! It's freeware. The only thing I expect from users is that they drop me a mail.

All modifications on this class are free, but please let me know if it solvers a bug

or adds some good features. Also comment your code and don't let me solve your bugs!

Target:

The class is not intended to use as a baseclass for modemcommunication but

more for driving hardware or reading hardware via the serial port.

From the classes included there is only one class important: CSerialPort.

The other classes are only there to illustrate the use of this class.

Usage:

In your software you only need to create an instance of the CSerialPort class

and call InitPort.

BOOL CSerialPort::InitPort(CWnd* pPortOwner,		// the owner (CWnd) of the port (receives message)

						 UINT portnr,			// portnumber (1..4)

						 UINT baud,				// baudrate

						 char parity,			// parity

						 UINT databits,			// databits

						 UINT stopbits,			// stopbits

						 DWORD dwCommEvents,		// EV_RXCHAR, EV_CTS etc

						 UINT writebuffersize)	// size of the writebuffer

The dwCommEvents flag can be used for communication with the owner of this class.

The flags can be one of the following (or combined with |):

WM_COMM_BREAK_DETECTED	A break was detected on input.

WM_COMM_CTS_DETECTED		The CTS (clear-to-send) signal changed state.

WM_COMM_DSR_DETECTED		The DSR (data-set-ready) signal changed state.

WM_COMM_ERR_DETECTED		A line-status error occurred. Line-status errors are 					CE_FRAME, CE_OVERRUN, and CE_RXPARITY.

WM_COMM_RING_DETECTED		A ring indicator was detected.

WM_COMM_RLSD_DETECTED		The RLSD (receive-line-signal-detect) signal changed state.

WM_COMM_RXCHAR			A character was received and placed in the input buffer.

WM_COMM_RXFLAG_DETECTED	The event character was received and placed in the input

					buffer.

Accept the first parameter all parameters are optional. The standard values are:

portnr		= 1

baud		= 19200

parity		= 'N'

databits		= 8,

stopsbits	= 1,

dwCommEvents	= EV_RXCHAR | EV_CTS,

nBufferSize	= 512);

So the follwing code is enough to make communication possible:

in the header of the owner:

	CSerialPort	m_Serial;

in the code:

	m_Serial.InitPort(this);

	m_Serial.StartMonitoring();

Then the tread that watches the port is started and all events on the port are send to

the owner. The receive a character the owner needs a messageentry in the messagemap:

BEGIN_MESSAGE_MAP(CCommtestDlg, CDialog)

	//{{AFX_MSG_MAP(CCommtestDlg)

	ON_MESSAGE(WM_COMM_RXCHAR, OnCommunication)

	ON_MESSAGE(WM_COMM_CTS_DETECTED, OnCTSDetected)

	//}}AFX_MSG_MAP

END_MESSAGE_MAP()

and they must be handled:

LONG CCommtestDlg::OnCommunication(WPARAM ch, LPARAM port)

{

	// do something with the received character

	return 0;

}

This is it for reading. Writing can be done with WriteChar or WriteToPort

