会员: 密码:  免费注册 | 忘记密码 | 会员登录 网页功能: 加入收藏 设为首页 网站搜索  
 安全技术技术文档
  · 安全配制
  · 工具介绍
  · 黑客教学
  · 防火墙
  · 漏洞分析
  · 破解专题
  · 黑客编程
  · 入侵检测
 安全技术论坛
  · 安全配制
  · 工具介绍
  · 防火墙
  · 黑客入侵
  · 漏洞检测
  · 破解方法
  · 杀毒专区
 安全技术工具下载
  · 扫描工具
  · 攻击程序
  · 后门木马
  · 拒绝服务
  · 口令破解
  · 代理程序
  · 防火墙
  · 加密解密
  · 入侵检测
  · 攻防演示
技术文档 > VC文档 > 系统硬件
Windows NT/2000下不用驱动的Ring0代码实现
发表日期:2007-02-07 09:17:46作者: 出处:  

  大家知道,Windows NT/2000为实现其可靠性,严格将系统划分为内核模式与用户模式,在i386系统中分别对应CPU的Ring0与Ring3级别。Ring0下,可以执行特权级指令,对任何I/O设备都有访问权等等。要实现从用户态进入核心态,即从Ring 3进入Ring 0必须借助CPU的某种门机制,如中断门、调用门等。而Windows NT/2000提供用户态执行系统服务(Ring 0例程)的此类机制即System Service的int 2eh中断服务等,严格的参数检查,只能严格的执行Windows NT/2000提供的服务,而如果想执行用户提供的Ring 0代码(指运行在Ring 0权限的代码),常规方法似乎只有编写设备驱动程序。本文将介绍一种在用户态不借助任何驱动程序执行Ring0代码的方法。
  Windows NT/2000将设备驱动程序调入内核区域(常见的位于地址0x80000000上),由DPL为0的GDT项8,即cs为8时实现Ring 0权限。本文通过在系统中构造一个指向我们的代码的调用门(CallGate),实现Ring0代码。基于这个思路,为实现这个目的主要是构造自己的CallGate。CallGate由系统中叫Global Descriptor Table(GDT)的全局表指定。GDT地址可由i386指令sgdt获得(sgdt不是特权级指令,普通Ring 3程序均可执行)。GDT地址在Windows NT/2000保存于KPCR(Processor Control Region)结构中(见《再谈Windows NT/2000环境切换》)。GDT中的CallGate是如下的格式:

typedef struct
  {
    unsigned short offset_0_15;
    unsigned short selector;

    unsigned char param_count : 4;
    unsigned char some_bits : 4;

    unsigned char type : 4;
    unsigned char app_system : 1;
    unsigned char dpl : 2;
    unsigned char present : 1;
  
    unsigned short offset_16_31;
  } CALLGATE_DESCRIPTOR;

  GDT位于内核区域,一般用户态的程序是不可能对这段内存区域有直接的访问权。幸运的是Windows NT/2000提供了一个叫PhysicalMemory的Section内核对象位于\Device的路径下。顾名思义,通过这个Section对象可以对物理内存进行操作。用objdir.exe对这个对象分析如下:

  C:\NTDDK\bin>objdir /D \Device

PhysicalMemory
    Section
    DACL -
      Ace[ 0] - Grant - 0xf001f - NT AUTHORITY\SYSTEM
                  Inherit:
                  Access: 0x001F and ( D RCtl WOwn WDacl )

      Ace[ 1] - Grant - 0x2000d - BUILTIN\Administrators
                  Inherit:
                  Access: 0x000D and ( RCtl )

  从dump出的这个对象DACL的Ace可以看出默认情况下只有SYSTEM用户才有对这个对象的读写权限,即对物理内存有读写能力,而Administrator只有读权限,普通用户根本就没有权限。不过如果我们有Administrator权限就可以通过GetSecurityInfo、SetEntriesInAcl与SetSecurityInfo这些API来修改这个对象的ACE。这也是我提供的代码需要Administrator的原因。实现的代码如下:

VOID SetPhyscialMemorySectionCanBeWrited(HANDLE hSection)
  {

    PACL pDacl=NULL;
    PACL pNewDacl=NULL;
    PSECURITY_DESCRIPTOR pSD=NULL;
    DWORD dwRes;
    EXPLICIT_ACCESS ea;

    if(dwRes=GetSecurityInfo(hSection,SE_KERNEL_OBJECT,DACL_SECURITY_INFORMATION,
            NULL,NULL,&pDacl,NULL,&pSD)!=ERROR_SUCCESS)
      {
        printf( "GetSecurityInfo Error %u\n", dwRes );
        goto CleanUp;
      }

    ZeroMemory(&ea, sizeof(EXPLICIT_ACCESS));
    ea.grfAccessPermissions = SECTION_MAP_WRITE;
    ea.grfAccessMode = GRANT_ACCESS;
    ea.grfInheritance= NO_INHERITANCE;
    ea.Trustee.TrusteeForm = TRUSTEE_IS_NAME;
    ea.Trustee.TrusteeType = TRUSTEE_IS_USER;
    ea.Trustee.ptstrName = "CURRENT_USER";


    if(dwRes=SetEntriesInAcl(1,&ea,pDacl,&pNewDacl)!=ERROR_SUCCESS)
      {
        printf( "SetEntriesInAcl %u\n", dwRes );
        goto CleanUp;
      }

    if(dwRes=SetSecurityInfo(hSection,SE_KERNEL_OBJECT,DACL_SECURITY_INFORMATION,NULL,NULL,pNewDacl,NULL)!=ERROR_SUCCESS)
      {
        printf("SetSecurityInfo %u\n",dwRes);
        goto CleanUp;
      }

  CleanUp:

    if(pSD)
      LocalFree(pSD);
    if(pNewDacl)
      LocalFree(pSD);
  }

  这段代码对给定HANDLE的对象增加了如下的ACE:

  PhysicalMemory
    Section
    DACL -
      Ace[ 0] - Grant - 0x2 - WEBCRAZY\Administrator
                  Inherit:
                  Access: 0x0002 //SECTION_MAP_WRITE

  这样我们在有Administrator权限的条件下就有了对物理内存的读写能力。但若要修改GDT表实现Ring 0代码。我们将面临着另一个难题,因为sgdt指令获得的GDT地址是虚拟地址(线性地址),我们只有知道GDT表的物理地址后才能通过\Device\PhysicalMemory对象修改GDT表,这就牵涉到了线性地址转化成物理地址的问题。我们先来看一看Windows NT/2000是如何实现这个的:

kd> u nt!MmGetPhysicalAddress l 30
  ntoskrnl!MmGetPhysicalAddress:
  801374e0 56 push esi
  801374e1 8b742408 mov esi,[esp+0x8]
  801374e5 33d2 xor edx,edx
  801374e7 81fe00000080 cmp esi,0x80000000
  801374ed 722c jb ntoskrnl!MmGetPhysicalAddress+0x2b (8013751b)
  801374ef 81fe000000a0 cmp esi,0xa0000000
  801374f5 7324 jnb ntoskrnl!MmGetPhysicalAddress+0x2b (8013751b)
  801374f7 39153ce71780 cmp [ntoskrnl!MmKseg2Frame (8017e73c)],edx
  801374fd 741c jz ntoskrnl!MmGetPhysicalAddress+0x2b (8013751b)
  801374ff 8bc6 mov eax,esi
  80137501 c1e80c shr eax,0xc
  80137504 25ffff0100 and eax,0x1ffff
  80137509 6a0c push 0xc
  8013750b 59 pop ecx
  8013750c e8d3a7fcff call ntoskrnl!_allshl (80101ce4)
  80137511 81e6ff0f0000 and esi,0xfff
  80137517 03c6 add eax,esi
  80137519 eb17 jmp ntoskrnl!MmGetPhysicalAddress+0x57 (80137532)
  8013751b 8bc6 mov eax,esi
  8013751d c1e80a shr eax,0xa
  80137520 25fcff3f00 and eax,0x3ffffc
  80137525 2d00000040 sub eax,0x40000000
  8013752a 8b00 mov eax,[eax]
  8013752c a801 test al,0x1
  8013752e 7506 jnz ntoskrnl!MmGetPhysicalAddress+0x44 (80137536)
  80137530 33c0 xor eax,eax
  80137532 5e pop esi
  80137533 c20400 ret 0x4

从这段汇编代码可看出如果线性地址在0x80000000与0xa0000000范围内,只是简单的进行移位操作(位于801374ff-80137519指令间),并未查页表。我想Microsoft这样安排肯定是出于执行效率的考虑。这也为我们指明了一线曙光,因为GDT表在Windows NT/2000中一般情况下均位于这个区域(我不知道/3GB开关的Windows NT/2000是不是这种情况)。

  经过这样的分析,我们就可以只通过用户态程序修改GDT表了。而增加一个CallGate就不是我可以介绍的了,找本Intel手册自己看一看了。具体实现代码如下:

typedef struct gdtr {
    short Limit;
    short BaseLow;
    short BaseHigh;
  } Gdtr_t, *PGdtr_t;

  ULONG MiniMmGetPhysicalAddress(ULONG virtualaddress)
  {
    if(virtualaddress<0x80000000||virtualaddress>=0xA0000000)
      return 0;
    return virtualaddress&0x1FFFF000;
  }

  BOOL ExecRing0Proc(ULONG Entry,ULONG seglen)
  {
    Gdtr_t gdt;
    __asm sgdt gdt;
  
    ULONG mapAddr=MiniMmGetPhysicalAddress(gdt.BaseHigh<<16U|gdt.BaseLow);
    if(!mapAddr) return 0;

    HANDLE hSection=NULL;
    NTSTATUS status;
    OBJECT_ATTRIBUTES objectAttributes;
    UNICODE_STRING objName;
    CALLGATE_DESCRIPTOR *cg;

    status = STATUS_SUCCESS;
  
    RtlInitUnicodeString(&objName,L"\\Device\\PhysicalMemory");

    InitializeObjectAttributes(&objectAttributes,
                      &objName,
                      OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
                      NULL,
                      (PSECURITY_DESCRIPTOR) NULL);

    status = ZwOpenSection(&hSection,SECTION_MAP_READ|SECTION_MAP_WRITE,&objectAttributes);

    if(status == STATUS_ACCESS_DENIED){
      status = ZwOpenSection(&hSection,READ_CONTROL|WRITE_DAC,&objectAttributes);
      SetPhyscialMemorySectionCanBeWrited(hSection);
      ZwClose(hSection);
      status =ZwOpenSection(&hSection,SECTION_MAP_WRITE|SECTION_MAP_WRITE,&objectAttributes);
    }

    if(status != STATUS_SUCCESS)
      {
        printf("Error Open PhysicalMemory Section Object,Status:%08X\n",status);
        return 0;
      }
    
    PVOID BaseAddress;

    BaseAddress=MapViewOfFile(hSection,
              FILE_MAP_READ|FILE_MAP_WRITE,
              0,
              mapAddr, //low part

              (gdt.Limit+1));

    if(!BaseAddress)
      {
        printf("Error MapViewOfFile:");
        PrintWin32Error(GetLastError());
        return 0;
      }

    BOOL setcg=FALSE;

    for(cg=(CALLGATE_DESCRIPTOR *)((ULONG)BaseAddress+(gdt.Limit&0xFFF8));(ULONG)cg>(ULONG)BaseAddress;cg--)
      if(cg->type == 0){
        cg->offset_0_15 = LOWORD(Entry);
        cg->selector = 8;
        cg->param_count = 0;
        cg->some_bits = 0;
        cg->type = 0xC; // 386 call gate

        cg->app_system = 0; // A system descriptor

        cg->dpl = 3; // Ring 3 code can call

        cg->present = 1;
        cg->offset_16_31 = HIWORD(Entry);
        setcg=TRUE;
        break;
      }

    if(!setcg){
        ZwClose(hSection);
        return 0;
    }

    short farcall[3];

    farcall[2]=((short)((ULONG)cg-(ULONG)BaseAddress))|3; //Ring 3 callgate;


    if(!VirtualLock((PVOID)Entry,seglen))
      {
        printf("Error VirtualLock:");
        PrintWin32Error(GetLastError());
        return 0;
      }

    SetThreadPriority(GetCurrentThread(),THREAD_PRIORITY_TIME_CRITICAL);

    Sleep(0);

    _asm call fword ptr [farcall]

    SetThreadPriority(GetCurrentThread(),THREAD_PRIORITY_NORMAL);

    VirtualUnlock((PVOID)Entry,seglen);

    //Clear callgate

    *(ULONG *)cg=0;
    *((ULONG *)cg+1)=0;

    ZwClose(hSection);
    return TRUE;

  }

  我在提供的代码中演示了对Control Register与I/O端口的操作。CIH病毒在Windows 9X中就是因为获得Ring 0权限才有了一定的危害,但Windows NT/2000毕竟不是Windows 9X,她已经有了比较多的安全审核机制,本文提供的代码也要求具有Administrator权限,但如果系统存在某种漏洞,如缓冲区溢出等等,还是有可能获得这种权限的,所以我不对本文提供的方法负有任何的责任,所有讨论只是一个技术热爱者在讨论技术而已。谢谢!

  参考资料:
    1.Intel Corp<<Intel Architecture Software Developer's Manual,Volume 3>>

返回顶部】 【打印本页】 【关闭窗口

关于我们 / 给我留言 / 版权举报 / 意见建议 / 网站编程QQ群   
Copyright ©2003- 2024 Lihuasoft.net webmaster(at)lihuasoft.net 加载时间 0.00176